1.3.5 1.3.6 Ratio TEST Alternating Series TEST PDF

Title 1.3.5 1.3.6 Ratio TEST Alternating Series TEST
Author MUHAMMAD LUQMAN HAKI BIN MOHD ZAMRI
Course Calculus III For Engineers
Institution Universiti Teknologi MARA
Pages 5
File Size 218.2 KB
File Type PDF
Total Downloads 221
Total Views 507

Summary

Download 1.3.5 1.3.6 Ratio TEST Alternating Series TEST PDF


Description

1.3.5 Ratio Test Theorem: Let ∑ 𝑘=1 𝑢𝑘 be a series with positive terms, and suppose 𝑢𝑘+1 | 𝑢𝑘

𝜌 = lim | 𝑘→∞

a) If 𝜌 < 1, the series converges absolutely, hence converges b) If 𝜌 > 1 or 𝜌 = +∞ , the series diverges c) If 𝜌 = 1, the test is inconclusive

Example Apply Ratio Test to determine if the series converges or diverges. 2𝑘

1. ∑ 𝑘=1 ( 𝑘! )

𝑢𝑘+1 | 𝑢𝑘

𝜌 = lim | 𝑘→∞

2𝑘+1 (𝑘+1)! 2𝑘

= lim | 𝑘→∞

𝑘!

| 𝑘!

2𝑘+1

= lim | (𝑘+1)! . 𝑘→∞

= lim | ( 𝑘→∞

2𝑘

2 𝑘 . 21 𝑘+1) . 𝑘!

.

2

|

𝑘!

2𝑘

|

= lim | 𝑘+1| = 0 < 1 , 𝑘→∞

Series converges absolutely, hence converges 2. ∑  𝑘=1

(2𝑘)! 4𝑘

𝑢𝑘+1 | 𝑘→∞ 𝑢𝑘

𝜌 = lim |

= lim | 𝑘→∞

=

1

4𝑘 41

.(

4𝑘

2𝑘)!

4𝑘

. (2𝑘)!|

|

(2𝑘+2)(2𝑘+1)(2𝑘)!

= lim | 𝑘→∞

4 𝑘+1

(2𝑘+2)!

= lim | 𝑘→∞

|

(2(𝑘+1))!

= lim | 𝑘→∞

(2(𝑘+1))! 4𝑘+1 (2𝑘)! 4𝑘

4𝑘 41

.(

4𝑘

2𝑘 )!

lim |(2𝑘 + 2)(2𝑘 + 1)|

|

4 𝑘→∞

=∞ > 1,

series diverges

3𝑘

3. ∑  𝑘=1 ( ) 𝑘2

𝑢𝑘+1 | 𝑘→∞ 𝑢𝑘

𝜌 = lim |

3𝑘+1 (𝑘+1)2 3𝑘 𝑘2

= lim | 𝑘→∞

|

3𝑘+1

= lim | 𝑘→∞

(𝑘+1)2

𝑘→∞

(𝑘+1)2

= lim |

𝑘2

. 3𝑘 |

3 𝑘 31

𝑘2

. 3𝑘 |

𝑘2

= 3 lim |(𝑘+1)2 | 𝑘→∞

or alternatively,

𝑘2

= 3 lim |

= 3 lim |𝑘 2 +2𝑘+1 | 𝑘→∞

= 3 lim | 𝑘→∞

=3>1

1

2

1

1+ 𝑘+ 2 𝑘

|

𝑘→∞

| 𝑘+1

𝑘→∞

1+𝑘

= 3 lim |

,

1

series diverges

1

4. ∑  𝑘=1 (2𝑘−1)

𝜌 = lim | 𝑘→∞

𝑢𝑘+1

= lim | 𝑘→∞

𝑢𝑘

|

1 2(𝑘+1)−1 1 2𝑘−1

1

|

= lim |2(𝑘+1)−1 . 𝑘→∞

1

= lim |2𝑘+1 . 𝑘→∞

2𝑘−1

= lim |2𝑘+1 | 𝑘→∞

𝑘→∞

5. ∑  𝑛=1

1 𝑘 1 2+ 𝑘

2−

= lim |

2𝑘−1

2𝑘−1 1

1

|

|=1

,

|

test is inconclusive (test fails)

(𝑛+1)! 𝑒 𝑛. 𝑛

𝑢𝑛+1

𝜌 = lim | 𝑛→∞

𝑢𝑛

| = lim | 𝑛→∞

= lim | 𝑛→∞

(𝑛+2)! 𝑒𝑛+1 . (𝑛+1) (𝑛+1)! 𝑒𝑛 . 𝑛

|

(𝑛 + 2)! 𝑒𝑛. 𝑛 | 𝑒 𝑛+1 . (𝑛 + 1) (𝑛 + 1)!

2

𝑘

1

2

| =3

= lim

(𝑛 + 2) (𝑛 + 1)! 𝑒 𝑛 . 𝑛 | (𝑛 + 1)! 𝑛 𝑒 1 . (𝑛 + 1) 𝑛→∞ 𝑒 (𝑛+2) 𝑛 1 = lim | (𝑛+1) |

=

=

= 6. ∑  𝑛=1 (

3𝑛 . 𝑛! 𝑛2

|

𝑒 𝑛→∞

1

𝑒 𝑛→∞

1

lim |

𝑒 𝑛→∞ ∞ 𝑒

𝜌 = lim | 𝑛→∞

𝑢𝑛

|

𝑛+1

𝑛+2 1+

|

1 𝑛

=∞ > 1 ,

) 𝑢𝑛+1

𝑛2 +2𝑛

lim |

| = lim | 𝑛→∞

= lim | 𝑛→∞

= lim | 𝑛→∞

= lim | 𝑛→∞

3𝑛+1 . (𝑛+1)! (𝑛+1)2 3𝑛 . 𝑛! 𝑛2

series diverges

|

3𝑛+1 . (𝑛+1)!

𝑛2

(𝑛+1)2

3𝑛 31 . (𝑛+1)𝑛! (𝑛+1)2

31 . (𝑛+1) 𝑛2 1 (𝑛+1)2

𝑛→∞

𝑛2 (𝑛+1) (𝑛+1)2

𝑛→∞

𝑛+1

𝑛→∞

1+ 𝑛

= 3 lim | = 3 lim |

= 3 lim |

𝑛2

=∞ > 1,

𝑛

1

|

|

3𝑛 .

|

𝑛!

𝑛2

|

3𝑛 . 𝑛!

|

|

series diverges

1.3.6 ALTERNATING SERIES TEST Alternating Series are series whose terms are alternatively positive and negative. For example: 1

1

1

1

1 − 2 + 3 − 4 +. . . +(−1)𝑛+1 −. .. 𝑛

or

1

1

1

1

−1 + 2 − 3 + 4 −. . . +(−1)𝑛 −. .. 𝑛

The general forms of Alternating Series are: 𝑛 ∑∞ 𝑛=1 (−1) 𝑎𝑛





or

(−1)𝑛+1𝑎𝑛

𝑛=1

where ak’s are assumed to be positive in both cases.

Theorem: An alternating series will CONVERGES if: a)

a1 > a2 > a3 > a4 > ….. > an > …..

b)

𝑛→∞

(a’s decreasing)

and

𝑙𝑖𝑚 𝑎𝑛 = 0

Example: Use Alternating Series Test (AST) to show the series converges. 1.







(−1)𝑘+1

𝑘=1



(−1)𝑘+1

𝑘=1

1 1

1

𝑘 𝑘

a) 1 > 2 >

1

1

=1− + − 2 3 1

> 3

1

1

4

1

+ − ⋯ …. 5

> 5 > ⋯ …. 4 1

b) 𝑙𝑖𝑚 𝑎𝑘 = 𝑙𝑖𝑚

𝑘→∞ 𝑘

𝑘→∞

1

=

1

=0



By AST, the series converges.

2.







(−1)𝑘+1

𝑘=1



(−1)𝑘+1

𝑘=1

5

𝑘+3 𝑘(𝑘+1) 𝑘+3 𝑘(𝑘+1)

=

1

4

1(2)



5

2(3)

5

6

+ 3(4 ) − ⋯ …

1

= 2 − 6 + − ⋯ … .. 2

a) 2 > 6 > 2 > ⋯ . … ….

𝑘+3 𝑘→∞ 𝑘(𝑘+1)

b) 𝑙𝑖𝑚 𝑎𝑘 = 𝑙𝑖𝑚 𝑘→∞

= 𝑙𝑖𝑚

𝑘+3

𝑘→∞ 𝑘 2 +𝑘

= 𝑙𝑖𝑚

𝑘→∞

1 3 + 𝑘 𝑘2 1 1+𝑘

=

0+0 1+0

By AST, the series converges.

=0...


Similar Free PDFs