Advanced Engineering Mathematics by erwin kreyszig 9th edition Chapter 1 and 2 Answers PDF

Title Advanced Engineering Mathematics by erwin kreyszig 9th edition Chapter 1 and 2 Answers
Author Anonymous User
Course differential equation
Institution University of Engineering and Technology Peshawar
Pages 44
File Size 3.9 MB
File Type PDF
Total Downloads 3
Total Views 146

Summary

Answer of Chapter 1 and Chapter 2 of Advanced Engineering Mathematics by erwin kreyszig 9th edition.
-It is quite helpful when checking answer....


Description

Student Solutions Manual and Study Guide Chapters 1 & 2 Preview

for

Numerical Analysis 9th EDITION

Richard L. Burden Youngstown State University

J. Douglas Faires Youngstown State University

Prepared by Richard L. Burden Youngstown State University

J. Douglas Faires Youngstown State University

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

© 2011 Brooks/Cole, Cengage Learning ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706 For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to [email protected]

ISBN-13: 978-0-538-73563-6 ISBN-10: 0-538-73563-5 Brooks/Cole 20 Channel Center Street Boston, MA 02210 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit academic.cengage.com Purchase any of our products at your local college store or at our preferred online store www.ichapters.com



x − (ln x)x = 0

[4, 5]. x

f (x) = x − (ln x)x = x − exp(x(ln(ln x))). f

[4, 5]

f (4) ≈ 0.3066 f (5) ≈ −5.799, 0 = f (x) = x − (ln x)x . x (4, 5)

3

2

f (x) = x − 2x − 4x + 3

x3 − 2x2 − 4x + 3 = 0 f

0 = f ′ (x) = 3x2 − 4x − 4 = (3x + 2)(x − 2); x = − 32 f (4) = 19

x = 2.

f (−2) = −5

max |f (x)|

0≤x≤1

f

f (x) = 0   f − 32 ≈ 4.48 f (0) = 3 [−2, −2/3] [0, 1],

f (x) f (1) = −2 [2, 4].

f (2) = −5

f (x) = (2 − ex + 2x) /3 f ′ (x) = (−ex + 2) /3 [0, 1] |f (x)|

f

x = ln 2

max{|f (0)|, |f (ln 2)|, |f (1)|} = max{1/3, (2 ln 2)/3, (4 − e)/3} = (2 ln 2)/3. f (x) = x3 + 2x + k x 2x + k > 0 f (c) = 0

x

k x < − 21 k

f (x) < 2x + k < 0 x > − 12 k

f (c ′ ) = 0 c ′ 6= c f (c) = 0 f ′ (x) = 3x2 + 2 > 0 c′ f ′ (p) = 0 f (c) = 0 f (c ′ ) = 0 c ′ 6= c f (c) = 0

x>0 c p

c

x c

f (x) = ex cos x P 2 (0.5)

x0 = 0

f (0.5)

Z

1

0

|f (0.5) − P 2 (0.5)|

x |f (x) − P 2 (x)| Z 1 P 2 (x) dx f (x) dx

[0, 1]

0

f ′ (x) = ex (cos x − sin x),

f ′′(x) = −2ex (sin x),

f (0) = 1 f ′ (0) = 1

f ′′′(x) = −2ex (sin x + cos x),

f ′′(0) = 0. R2 (x) =

P 2 (x) = 1 + x

−2eξ (sin ξ + cos ξ) 3 x . 3!

P 2 (0.5) = 1 + 0.5 = 1.5    1  −2eξ (sin ξ + cos ξ ) (0.5)2  ≤ (0.5)2 max |eξ (sin ξ + cos ξ)|. |f (0.5) − P 2 (0.5)| ≤ max  3! 3 ξ∈[0.0.5] ξ∈[0,0.5] Dx ex (sin x + cos x) = 2ex cos x > 0 ex (sin x + cos x [0, 0.5]

[0, 0.5]

[0, 0.5]

e0 (sin 0 + cos 0) = 1 < e0.5 (sin 0.5 + cos 0.5) ≈ 2.24. |f (0.5) − P 2 (0.5)| ≤

1 (0.5)3 (2.24) ≈ 0.0932. 3 x ∈ [0, 1]

1 |f (x) − P 2 (x)| ≤ (1.0)3 e1 (sin 1 + cos 1) ≈ 1.252. 3 Z Z Z

0

1

1 0

f (x) dx ≈

1 0

|R2 (x)| dx ≤

ex cos x dx =



Z

0

1

Z

0

1

1  3 x2 = . 1 + x dx = x + 2 2 0

1 1 e (cos 1 + sin 1)x3 dx = 3

Z

1

1.252x3 dx = 0.313.

0

1 1 ex e (cos x + sin x) = (cos 1 + sin 1) − (1 + 0) ≈ 1.378, 2 2 2 0

|1.378 − 1.5| ≈ 0.12.

x

sin x ≈ x

sin 1◦

π 180◦ = π f (x) = sin x f ′ (x) = cos x f ′′(x) = − sin x, 1◦ = 180 f ′′′(x) = − cos x, f ′′(0) = 0. f (0) = 0 f ′ (0) = 1, sin x ≈ x ξ 3 x . R2 (x) = − cos | cos ξ| ≤ 1 f (x) ≈ P 2 (x) 3!     π    π    π   − cos ξ  π 3   ≤ 8.86 × 10−7 . sin − =  = R2 180 180  180 180 3!

f (x) = ex/2 sin 3x P 3 (x) f

(4)

(x) f (x)

f :=

g :=

p3 :=

x  2

·

x 3

f := e(1/2)x sin

(f, x = 0, 4)

(g,

)

1 x 3



23 3 1 1 x + x2 + x 6 3 648

(f, x, x, x, x) f 4 := −

f 5 :=



  23 3 1 1 x + O x4 g := x + x2 + 648 6 3

p3 :=

f 4 :=

[0, 1]

|f (x) − P 3 (x)|

119 (1/2x) e sin 1296



   1 5 (1/2x) 1 x x + e cos 3 3 54

(f 4, x) f 5 := −

    1 61 (1/2x) 1 199 (1/2x) x e cos x + e sin 3 3888 3 2592 [0, 1]

p :=

(f 5 = 0, x, 0..1) p := .6047389076 x=0 1

p

c1 :=

(

(x = p, f 4)) c1 := .09787176213

c2 :=

(

(x = 0, f 4)) c2 := .09259259259

c3 :=

(

(x = 1, f 4)) c3 := .09472344463 f (4)(x)

c1

:= c1/24 := .004077990089 x

| sin x| ≤ |x|

x≥0

sin x ≤ x

f (x) = x − sin x x=0

x

−1 ≤ cos x ≤ 1 | sin x| ≤ 1

f ′ (x) = 1 − cos x ≥ 0 |x| ≥ π

f (x) = x − sin x

f (x)

f (x) > f (0) = 0 x>0 | sin x| = sin x ≤ x = |x| −π < x < 0 sin(−x) ≤ (−x)

x x≥0

x1

| sin x| ≤ |x|

x2

ξ

[a, b] x1

f (ξ) = c1

0≤x≤π

sin x π ≥ −x > 0 | sin x| = − sin x ≤ −x = |x| x

f ∈ C[a, b]

x ≥ sin x

x2

f (x1 ) + f (x2 ) 1 1 = f (x1 ) + f (x2 ). 2 2 2

c2

ξ f (ξ) =

x1

x2

c 1 f (x1 ) + c 2 f (x2 ) . c1 + c2 c1

c 1 6= −c 2

1 (f (x1 ) + f (x2 )) 2

c2

f (x1 )

f (x2 )

f ξ

f (ξ) = m = min{f (x1 ), f (x2 )} m ≤ f (x2 ) ≤ M,

x1

x2

1 1 1 (f (x1 ) + f (x2 )) = f (x1 ) + f (x2 ). 2 2 2 M = max{f (x1 ), f (x2 )}.

c 1 m ≤ c 1 f (x1 ) ≤ c 1 M

m ≤ f (x1 ) ≤ M

c 2 m ≤ c 2 f (x2 ) ≤ c 2 M.

(c 1 + c 2 )m ≤ c 1 f (x1 ) + c 2 f (x2 ) ≤ (c 1 + c 2 )M m≤

c 1 f (x1 ) + c 2 f (x2 ) ≤ M. c1 + c2 x1

ξ

x1

x2

x2 f (ξ) =

c 1 f (x1 ) + c 2 f (x2 ) . c1 + c2

f (x) = x2 + 1 x1 = 0 x2 = 1 c 1 = 2

f (x) > 0

c 2 = −1

x

c 1 f (x1 ) + c 2 f (x2 ) 2(1) − 1(2) = = 0. 2−1 c1 + c2

√ 2

p∗  √  p∗ − 2 √  ≤ 10−4 ,  2 p∗

10−4

 √  √  p∗ − 2 ≤ 2 × 10−4 ;

√ √ √ − 2 × 10−4 ≤ p∗ − 2 ≤ 2 × 10−4 . √ √  2(0.9999), 2(1.0001) . − 67 , 2e − 5.4 13 14

13 14

13 6 − = 0.0720 14 7

= 0.929

6 7

= 0.857

2e − 5.4 = 5.44 − 5.40 = 0.0400.

e = 2.72.

13 14

− 76 0.0720 = = 1.80. 2e − 5.4 0.0400 |1.80 − 1.954| = 0.0788, 1.954

|1.80 − 1.954| = 0.154

13 14

13 6 − = 0.0710 14 7

= 0.928

6 7

= 0.857

e = 2.71.

2e − 5.4 = 5.42 − 5.40 = 0.0200.

− 76 0.0710 = = 3.55. 2e − 5.4 0.0200 13 14

|3.55 − 1.954| = 0.817, 1.954

|3.55 − 1.954| = 1.60,

  π = 4 arctan 21 + arctan 13

P (x) = x − 13 x3 + 51 x5 . 

π = 4 arctan

P

1  2

= 0.464583

P

1 1 + arctan ≈ 3.145576. 2 3

|π − 3.145576| ≈ 3.983 × 10−3

f (x) =



ex − e−x . x

f (0.1) limx→0 ex − e−x = 1 − 1 = 0 x→0

3

= 0.3218107,

|π − 3.145576| ≈ 1.268 × 10−3 . |π|

limx→0 f (x)

lim

 1

limx→0 x = 0

1+1 ex − e−x ex + e−x = = 2. = lim x→0 1 1 x

e0.100 = 1.11 f (0.100) =

1.11 − 0.905 0.205 = = 2.05. 0.100 0.100

1 1 e x ≈ 1 + x + x2 + x3 2 6 f (x) ≈

e−0.100 = 0.905

1 1 e−x ≈ 1 − x + x2 − x3 , 2 6

    1 + x + 12 x2 + 61 x3 − 1 − x + 12 x2 − 61 x3 2x + 13 x3 1 = 2 + x2 . = x x 3

1 f (0.100) ≈ 2 + (0.100)2 = 2 + (0.333)(0.001) = 2.00 + 0.000333 = 2.00. 3

0

01111111111 0101001100000000000000000000000000000000000000000000.

 2  4  7  8 ! 1 1 1 1 +2 1+ + + + 2 2 2 2   1 1 1 83 1 =1+ + + = 1.32421875. = 20 1 + + 128 256 4 16 256 1023−1023

0

01111111111 0101001100000000000000000000000000000000000000000000.

0

01111111111 0101001011111111111111111111111111111111111111111111   =1.32421875 − 21023−1023 2−52 =1.3242187499999997779553950749686919152736663818359375,

0

01111111111 0101001100000000000000000000000000000000000000000001   =1.32421875 + 21023−1023 2−52 =1.3242187500000002220446049250313080847263336181640625.

f (x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.

f (1.53) f (x) n

enx = (ex )

f (x) = ((((1.01)ex − 4.62) ex − 3.11) ex + 12.2) ex − 1.99. e1.53 = 4.62 e3(1.53) = (4.62)2 (4.62) = (21.3)(4.62) = 98.4,

e2(1.53) = (4.62)2 = 21.3 e4(1.53) = (98.4)(4.62) = 455

f (1.53) = 1.01(455) − 4.62(98.4) − 3.11(21.3) + 12.2(4.62) − 1.99 = 460 − 455 − 66.2 + 56.4 − 1.99 = 5.00 − 66.2 + 56.4 − 1.99

= −61.2 + 56.4 − 1.99 = −4.80 − 1.99 = −6.79.

f (1.53) = (((1.01)4.62 − 4.62)4.62 − 3.11)4.62 + 12.2)4.62 − 1.99 = (((4.67 − 4.62)4.62 − 3.11)4.62 + 12.2)4.62 − 1.99 = ((0.231 − 3.11)4.62 + 12.2)4.62 − 1.99

= (−13.3 + 12.2)4.62 − 1.99 = −7.07. 7.61 | − 6.79 + 7.61| = 0.82 0.0710. f l(y)

k

0.108

| − 7.07 + 7.61| = 0.54 y      y − f l(y)  ≤ 0.5 × 10−k+1 .   y

d k+1 > 5.

d k+1 ≤ 5

d k+1 ≤ 5,   n −k   0.5 × 10−k  y − f l(y) = 0.d k+1 . . . × 10 ≤ = 0.5 × 10−k+1 .  n  0.d 1 . . . × 10 y 0.1

d k+1 > 5,   n −k   (1 − 0.5) × 10−k  y − f l(y)  = (1 − 0.d k+1 . . .) × 10 < = 0.5 × 10−k+1 . n   0.d 1 . . . × 10 0.1 y

T

0.995 ≤ P ≤ 1.005,

0.0995 ≤ V ≤ 0.1005,

0.082055 ≤ R ≤ 0.082065,

15



0.004195 ≤ N ≤ 0.004205.

287.61 ≤ T ≤ 293.42. 288.16

P

1.99 ≤ P ≤ 2.01

19



V

0.0497 ≤ V ≤ 0.0503,

286.61 ≤ T ≤ 293.72. 292.16 290.15

= 17◦

.

n arctan x = lim P n (x) = n→∞

∞ X i=1

(−1)i+1

x2i−1 (2i − 1)

|4P n (1) − π| < 10−3 10−10

π = 4 arctan 1 = 4

∞ X i=1

π

(−1)i+1

1 2i − 1 n

4 < 10−3 2(n + 1) − 1

4000 < 2n + 1.

n ≥ 2000. 4 < 10−10 2(n + 1) − 1

n > 20,000,000,000.

π 1 1 π = 4 arctan − arctan . 4 5 239 10−3

π

π=4

∞ X



(−1)i+1

i=1

X 1 1 (−1)i+1 − 2i−1 (2i − 1) 2i−1 239 5 (2i − 1) i=1 i 10−3

i+1 i := 1 :

4 51 (1)

4 = , 5

i=2:

4 53 (3)

4 375

=

4

i=3:

n X i X

55 (5)

=

4 = 2.56 × 10−4 . 15625

ai b j ?

i=1 j=1

Pi

i n X i=1

i=

j=1

ai b j

n(n + 1) 2

i

n X i=1

n

i−1 =

i−1 n(n + 1) −n 2

.

n−1 n(n + 1) 2

(n + 2)(n − 1) 2 i n X X

ai b j =

i=1 j=1

bj

n X i=1

i−1=

bj

i n X X ai bj , i=1

j=1

i

+ 1)

n.

i−1

n(n + 1) −n 2

n

1 n(n 2

.

ai 1 (n 2

+ 2)(n − 1)

n−1

A B C x1 x2 A=0 B=0 x1 = −C/B

x1

D = B 2 − 4AC

D=0

D...


Similar Free PDFs