ASTR EXAM 2 Cheat Sheet PDF

Title ASTR EXAM 2 Cheat Sheet
Author Jodi Quan
Course Sun, Stars And Galaxies
Institution Binghamton University
Pages 2
File Size 145.1 KB
File Type PDF
Total Downloads 164
Total Views 544

Summary

THE SUN is powered through nuclear energy nuclear potential energy 10 billion yrs. Luminosity total energy radiated calculated from fraction of energy that reaches Earth constant: energy that reaches Earth (1400 luminosity: 4 x 1026 watts 6 x 108 meters (109x wider than 2 x 1030 kilograms mass of ba...


Description

THE SUN

-Sun is powered through nuclear energy (E=mc2) nuclear potential energy ~ 10 billion yrs. Luminosity -luminosity: total energy radiated by Sun; calculated from fraction of energy that reaches Earth -solar constant: Sun’s energy that reaches Earth (1400 W/m2) -total luminosity: 4 x 1026 watts -radius: 6.9 x 108 meters (109x wider than Earth’s) -mass: 2 x 1030 kilograms (300,000x mass of Earth’s) -2 balances: 1) gravitational equilibrium: between&the&outward&& &&&&&&&&&&&push&of&internal&gas&pressure&and&the&inward&pull&of&& &&&&&&&&&&&gravity& &&&&&&& & &&&&&&&2)&energy&balance:& rate&at&which&fusion&releases&& &&&&&&&&&&&&energy&in&the&Sun’s&core&and&the&rate&at&which&the&& &&&&&&&&&&&&Sun’s&surface&radiates&this&energy&into&space& -core: most inner part of Sun; where nuclear fusion takes place (15 million Kelvin) -nuclear fusion: combining two nuclei into larger one -proton-proton chain: fusing 4 hydrogen nuclei into 1 helium nucleus w/ two protons and neutrons. Also releases gamma rays, neutrinos & positrons as result& -chromosphere:&middle&layer&of&the&solar&atmosphere&and&the& region&that&radiates&most&of&the&Sun’s&ultraviolet&light -photosphere:&outer&layer&of&the&atmosphere,&visible&surface&of &Sun & & -granulation:&rising&hot&gas&cells & -corona:&outermost&layer&of&this&atmosphere;&high&temperature&(1& million&Kelvin)&&&emits&most&X&rays;&low&density& -convection&zone:&where&energy&generated&in&the&solar&core&travels& upward,&transported&by&the&rising&of&hot&gas&and&falling&of&cool&gas& -radiation&zone:&energy&moves&outward&primarily&in&the&form&of& photons&of&light& -radiative&diffusion:&photons&take&long&time&to&make&outward& progress&b/c&they&constantly&deflect&off&things&and&stray&from&a& straight&path& -sunspots:&blotches&on&Sun’s&surface&that&look&darker&(4000&K)& & -strong&magnetic&fields&that&come&in&pairs&and&twist& & -lines&closer&when&field&is&stronger,&further&when&weaker & & -solar&prominences:&gas&trapped&under&giant&loops&& & -sunspot&cycle:&cycle&of&sun&spots&rising/falling& & -solar&cycle&lasts&about&11&yrs.&Before&N/S&switch& -solar&flares:&emit&bursts&of&UV&light&and&X&rays&at&speed&of&light& -solar&wind:&stream&of&charged&particles&continually&blown&outward& in&all&directions&from&the&Sun& -coronal holes: regions of corona nearly devoid of hot gas -eruptive prominences aren’t as dangerous as solar flares -Maunder minimum: historical data indicating most minimal sun spot activity (1650-1700)

STARS& -apparent brightness obeys inverse square law (i.e. if Sun was viewed from twice Earth’s distance, it would be dimmer by 2 2=4) -apparent brightness = star’s luminosity / 4d2pi -measuring stellar distance using trigonometric parallax: d = 1/p -d= distance in parsecs; p= parallax angle in arc seconds -1 parsec = 3.26 light years -dimmest stars: 10-4LSun ; brightest stars: 10 6LSun -apparent magnitude (m): how bright a star appears in sky -the smaller the magnitude, the brighter (1 brighter than 2)

-absolute magnitude (M): magnitude at 10 parsecs away -MSun = 4.83 ß we compare everything to Sun -distance modulus: difference btwn. apparent & absolute mag. m – M à Luminosity = n(M2-M1 ) where n=2.512 (light ratio) -spectral type: way&of&classifying&a&star&by&the&lines&that&appear&in& its&spectrum;&it&is&related&to&surface&temperature& & -OBAFGKM&from&hottest&(UV)&to&coolest&(infrared)& & -hottest&has&less&&&weak&lines;&coolest&has&opposite& -binary&star&systems:&star&system&containing&two&stars& & -visual&binary:&can&be&seen&distinctly&as&they&orbit& & -spectroscopic&binary:&identified&through&Doppler&shifts&& in&spectral&lines&(alternating&blue&&&redshifts)&& -eclipsing&binary:&orbit&in&our&line&of&sight;&when&neither& is&eclipsed,&we&see&both&lights.&When&one&eclipses,& brightness&drops&b/c&other&star&is&slightly&covered& -the&more&unequal&the&masses&are,&the&more&the¢er&mass& shifts&towards&the&bigger/massive+star& -measuring/estimating&stellar&masses:& & M1&+&M2&=&aau 3&/&Py2& & -rearranging&Law&of&Torques:&m1m2&=&r1r2&à&&& &&&&&m1&=&m2&(r2&/&r1)&& & & & -P&=&binary&system&period&(yrs.)&;&a&=&avg.&separation&(AU)& & m&–&M&=&5logd&–&5&(for&finding&distance)& 4& -Stefan-Boltzman&Law:&F&=&σT -&F&=& energy &per&;&T&=&temperature&;&σ&=&constant&(5.7&×& −8 2 4 10 &watt/(m &×&K ))& -calculating&stellar&radii:& 2 4 & Luminosity&=&R T -H-R&Diagram:&plots&stars&as&points,&with&stellar&luminosity&on&yaxis&and&spectral&type&(surface&temp.)&on&x-axis& & -temperatures&decrease+from&right&to&left& & -luminosity&ticks&each&increase&tenfold& & -main&sequence:&prominent&streak&running&from&upper&& left&to&lower&right&of&diagram& -supergiants:&large&and&bright& -giants:&smaller&in&radius&and&luminosity,&but&brighter&& than&main&sequence&stars&of&same&spectral&type)& -white&dwarfs:&small&in&radius,&high&temperature&& -stellar&luminosity&classes:& & I.&supergiants& & V.&main&sequence& & II.&bright&giants& & VI.&sub&dwarfs& & III.&giants& & VII.&white&dwarfs& & IV.&subgiants& -main-sequence&lifetime:&The&length&of&time&for&which&a&star&of&a& particular&mass&can&shine&by&fusing&hydrogen&into&helium&in&its&core& & -higher&mass&=&longer&lifetimes& -stellar&motion&is&a&combination&or&radial&(directly&towards/away)& and&traverse&(perpendicular&to&Earth)&direction& -even&if&they&don’t&seem&to&shift,&they&could&be&exhibiting& radial&motion&(blue/redshift)& & -calculating&traverse&velocity:&Vt&=&4.74μd& & μ&=&arc&sec./yr,&;&d&=&distance&(km)& 2 2 2 & -space&velocity:&Vspace &=&VT &+&VR &

EXAMPLE PROBLEMS: 1) Trigonometric Parallax Sirius, the brightest star in our night sky, has a measured parallax angle of 0.379″. Find its distance in parsecs and lightyears. Formula: d = 1 / p 1. d = 1 / 0.379 = 2.64 parsecs 2. 2.64 parsecs x 3.26 light years/parsec = 8.60 light years 2) Comparing Modern Magnitudes The Sun has an absolute magnitude of about 4.8. Polaris, the North Star, has an absolute magnitude of −3.6. How much more luminous is Polaris than the Sun? Formula: L= n(M 2-M1) 1. L = 2.512(4.8-(-3.6)) = 2.5128.4 = 2500 2. Polaris is 2,500x brighter than the Sun

3) Distance Modulus a.

b.

Star A has an apparent magnitude of 2.0 (brighter) and an absolute magnitude of 6.0 (dimmer). Find the difference of the two distances. 1. m – M = 2.0 – 6.0 = -4.0 2. nm-M = 2.512-4.0 = .025 = .025 / 1 3. Assign b1 and b2 d1 = x b1 = .025 d2 = 10 pc b2 = 1 2 2 4. b1 = d2 à .025 = 10 à x = 1.58 pc 2 2 1 x b2 d1 Star A has an apparent magnitude of 4 .0 (dimmer) and an absolute magnitude of -3.0 (brighter). Find the difference of the two distances. 1. m – M = 4.0 – (-3.0 ) = 7.0 2. nm-M = 2.5127.0 = 637.157 / 1 3. Assign b1 and b2 d1 = x b1 = 1 d2 = 10 pc b2 = 631.157 1 = 102 à x = 251 pc 4. b1 = d2 2 à 2 631.157 x2 b2 d1

4) Measuring Stellar Mass a.

5)

Preset 14 has an average separation of .12156 AU and a period of .02667 years. The radii are r1 = 4, r2 = 1.25 3 2 Formula: M1 + M2 = aau / Py 3 1. M1 + M2 = .12156 / .026672 = 2.52 2. m1m2 = r1r2 à m1 = m2 (r2 / r1) à m1 = m2 (1.25/4) 3. m2 (1.25/4) + m2 = 2.52 à m2 = 1.92 4. m1 = m2 (1.25/4) à m1 = 1.92 (1.25/4) = .60

Measuring Stellar Radii a. Star A is the same size as the Sun, but is 3x hotter. How much more luminous is Star A? Formula: L = R2T4 1. Lstar = R2T4 à 34 = 81 Lsun = R 2T4 14 b.

Spica is 3.9x hotter than the Sun, with LSpica = 12,100LSun. Determine the radius. 1. Lstar = R2T4 à 12100 = R2 3.94 Lsun = R 2T4 1 R2 14 2 2. 12100 = R (231) à 7.2 = R R2...


Similar Free PDFs