BIOL2202 L26 Lecture notes PDF

Title BIOL2202 L26 Lecture notes
Course Genetics
Institution University of Queensland
Pages 41
File Size 2.6 MB
File Type PDF
Total Downloads 67
Total Views 135

Summary

Module 5: Population Genetics & Genomics
Lecture 26: Chance & Necessity...


Description

Lecture 26! Chance and necessity!

Daniel Ortiz-Barrientos, PhD!

Natural'selec+on

If there is variation, fitness differences, and inheritance, then the trait frequency distribution will differ among age classes or life-history stages beyond that expected from ontogeny Endler 1986

Varia+on

Differen+al'reproduc+on'

Heredity aa

Aa

X

50%

50%

Natural'selec+on After

Frequency

Frequency

Before

If there is variation, fitness differences, and inheritance, then the trait frequency distribution will differ among age classes or life-history stages beyond that expected from ontogeny Endler 1986

Natural'selec+on

Natural selection proceeds not for biological reasons, but from the laws of probability. Only variation, fitness differences, and inheritance contain biological content Endler 1986

Natural'selec+on

Allele$frequencies$change$systema3cally$in$popula3ons$ because$of$differen3al$survival$and$reproduc3on$among$ genotypes.

Natural'selec+on p(A)

Allele$frequencies$change$ systema3cally$in$popula3ons$ because$of$differen3al$survival$ and$reproduc3on$among$ genotypes.

Time

Fitness • Fitness,$symbolized$by$w,$is$the$ability$to$survive$and$ reproduce.$ • Each$member$of$the$popula3on$has$its$own$fitness$ value:$ 0$if$it$dies$or$fails$to$reproduce,$ 1$if$it$survives$and$produces$1$offspring,$ 2$if$it$survives$and$produces$2$offspring,$etc.$ • The$average$fitness$of$the$popula3on$is$calculated$by$ averaging$the$fitness$of$individuals.$

Average$Fitness$and$Popula3on$Size

A

Rela+ve'Fitness

a

• Example:$in$a$par3cular$species$of$insect,$fitness$is$ determined$by$a$single$gene$with$two$alleles,$A$and$a.$ • Allele$A$causes$insects$to$be$dark$and$allele$a$causes$ them$to$be$light.$A$is$completely$dominant$to$a.$ • In$forests,$dark$insects$(AA$and$Aa)$survive$beMer,$but$ in$open$fields,$light$insects$(aa)$survive$beMer.

Rela+ve'Fitness • In$each$environment,$the$fitness$of$the$ superior$genotype(s)$is$defined$as$1.$The$ fitness$of$the$inferior$genotype(s)$is$ expressed$as$a$devia3on$from$1.$ • The$fitness$devia3on,$s,$is$the$selec+on' coefficient,$and$measures$the$intensity$of$ natural$selec3on$ac3ng$on$the$genotypes$in$ the$popula3on.

Rela+ve'Fitness Genotype

AA

Aa

aa

Phenotype

Dark

Dark

Light

Rela3ve$fitness$ 1 in$the$forest

1

1;s1

Rela3ve$fitness$ 1;s2 in$the$field

1;s2

1

Natural'Selec+on'in'the'Forest'Habitat • Assume$that$ini3ally,$p$=$0.5$and$q!=!0.5$and$ that$s1$=$0.1.$ • Assume$that$the$popula3on$mates$randomly$ and$that$the$genotype$are$present$in$HardyU Weinberg$frequencies$at$fer3liza3on$in$each$ genera3on.

Natural'Selec+on'in'the'Forest'Habitat • The$Ini3al$gene3c$composi3on$of$the$ popula3on$is:$ • WAA)=$1,$and$the$frequency$of$AA'at$fer3liza3on$ is$p2$=$0.25$ • WAa)=$1,$and$the$frequency$of$Aa'at$fer3liza3on$ is$2pq$=$0.50$ • WAA)=$(1U0.1),$and$the$frequency$of$aa#at$ fer3liza3on$is$q2$=$0.25

Natural'Selec+on'in'the'Forest'Habitat • In$forming$the$next$genera3on,$each$ genotype$will$contribute$gametes$in$ propor3on$to$its$frequency$and$rela3ve$ fitness.$The$rela3ve$contribu3ons$of$the$ three$genotypes$will$be$ – For$AA,$(0.25)$×$1$=$0.25$ – For$Aa,$(0.50)$×$1$=$0.50$ – For$aa,$(0.25)$×$(0.9)$=$0.225

Natural'Selec+on'in'the'Forest'Habitat • To$obtain$the$propor3onal$contribu3ons$of$ each$genotype$to$the$next$genera3on,$ divide$their$rela3ve$contribu3ons$by$their$ sum$(0.25$+$0.50$+$0.225$=$0.975).$ • The$propor3onal$contribu3ons$to$the$next$ genera3on$are$ – For$AA,$0.25$/$0.975$=$0.256$ – For$Aa,)0.50$/$0.975$=$0.513$ – For$aa,$0.231$/$0.975$=$0.231

Natural'Selec+on'in'the'Forest'Habitat

• In$the$next$genera3on$all$of$the$alleles$ transmiMed$by$aa$homozygotes$are$a,$and$ half$the$alleles$transmiMed$by$the$Aa$ heterozygotes$are$a.$ • The$frequency$of$a$in$the$next$genera3on,$ symbolized$q'$will$be$ $ $q'$=$0.231$+$(1/2)(0.513)$=$0.487

Natural'Selec+on'in'the'Forest'Habitat

Natural'Selec+on'in'the'Field'Habitat

Natural'Selec+on'in'the'Field'Habitat • Exercise:$ • Assume$that$ini3ally,$p)and$q)are$equally$ frequent,$and$that$s2)=$0.1$ • Assume$random$ma3ng$and$HW$equilibrium$at$ fer3liza3on$every$genera3on$ • Calculate$the$ini3al$gene3c$composi3on$of$the$ popula3on$ • Calculate$the$frequency$of$a$a`er$one$and$two$ genera3ons$of$selec3on$in$the$field$

Natural'Selec+on'for'Quan+ta+ve' Traits • Fitness$can$be$influenced$drama3cally$by$different$ alleles$of$a$single$gene$but$is$more$o`en$influenced$ by$the$allele$of$many$genes$that$affect$quan3ta3ve$ traits$such$as$body$size,$disease$suscep3bility,$and$ fecundity.$ • Natural$selec3on$can$affect$the$distribu3on$of$a$ quan3ta3ve$trait$through$direc3onal$selec3on,$ disrup3ve$selec3on,$or$stabilizing$selec3on.

Types'of'Natural'Selec+on • Direc+onal'selec+on$favours$values$of$a$trait$at$one$ end$of$its$distribu3on.$ • Disrup+ve'selec+on$favours$extreme$values$of$a$trait$ at$the$expense$of$intermediate$values.$ • Stabilising'selec+on$favours$intermediate$values$of$a$ trait.

Key'Points • Natural$selec3on$occurs$when$genotypes$differ$in$ the$ability$to$survive$and$reproduce—that$is,$ when$they$differ$in$fitness.$ • The$intensity$of$natural$selec3on$is$quan3fied$by$ the$selec3on$coefficient.

Key'Points • At$the$level$of$the$gene,$natural$selec3on$changes$ the$frequencies$of$alleles$in$popula3ons.$ • At$the$level$of$the$phenotype,$natural$selec3on$ influences$the$distribu3ons$of$quan3ta3ve$traits.$ • Natural$selec3on$may$be$direc3onal,$disrup3ve,$or$ stabilizing.

Random'Gene+c'DriH Allele$frequencies$change$unpredictably$ in$popula3ons$because$of$uncertain3es$ during$reproduc3on.

Random'Changes'in'Allele' Frequencies

Random'Gene+c'DriH • For$every$pair$of$parents$segrega3ng$different$alleles$ of$a$gene,$there$is$a$chance$that$the$Mendelian$ mechanism$will$lead$to$changes$in$the$frequencies$of$ the$alleles.$ • When$these$random$changes$are$summed$over$all$ pairs$of$parents,$there$may$be$aggregate$changes$in$ the$allele$frequencies$even$without$the$force$of$ natural$selec3on.$

Simulating allelic frequency change over time # Wright-Fisher simulation # n = number of individuals # f = number of focal alleles at base population n=50 f=1 pop = as.matrix( c( rep(0,n-f), rep(1,f) ) ) pop = as.matrix( sample(pop, n, replace=T) )

Vary this number and re-run the simulation

Drift_graph = function(t,R){ N...


Similar Free PDFs