Ch05 - Calculus (One and Several Variables) by Salas, Hille, Etgen Solution Manual PDF

Title Ch05 - Calculus (One and Several Variables) by Salas, Hille, Etgen Solution Manual
Author Bijon Setyawan
Course Calculus
Institution 國立清華大學
Pages 59
File Size 1.3 MB
File Type PDF
Total Views 134

Summary

Calculus (One and Several Variables) by Salas, Hille, Etgen Solution Manual Chapter 5...


Description

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

No

SECTION 5.2 CHAPTER 5 SECTION 5.2 1. Lf (P ) = 0( 14 ) + 21 ( 41 ) + 1( 12 ) = 85 ,

Uf (P ) = 21 ( 41 ) + 1( 14 ) + 2( 21 ) =

11 8

5 97 , 2. Lf (P ) = 23 ( 31 ) + 41 ( 12 ) + 0( 41 ) + (−1)(1) = − 144 5 Uf (P ) = 1( 13 ) + 32 ( 12 ) + 14 ( 41 ) + 0(1) =

3. Lf (P ) = 14 ( 21 ) + 4. Lf (P ) =

97 144

1 1 16 ( 4 ) +

0( 41 ) =

9 , 64

Uf (P ) = 1( 12 ) + 41 ( 41 ) +

15 ( 1 ) + 3 ( 1 ) + 16 4 4 4

0( 21 ) =

27 , 64

Uf (P ) = 1( 14 ) +

5. Lf (P ) = 1( 12 ) + 89 ( 21 ) =

4 9 3 7 2 5 5 (25 ) + 5 ( 25 ) + 5 ( 25 )

=

9 5 7 1 3 ) + 1( 25 )= ) + 45 ( 25 ) + 53 ( 25 ) + 52 ( 25 Uf (P ) = 51 ( 25

7. Lf (P ) =

1 3 16 ( 4 ) +

8. Lf (P ) =

9 1 1 1 16 ( 4 ) + 16 ( 2 ) +

Uf (P ) = 1( 14 ) +

0( 21 ) +

1 1 1 1 16 ( 4 ) + 4 ( 2 )

0( 21 ) +

=

37 64

15 1 3 1 16 ( 4 ) + 4 ( 2 )

=

55 64

25 Uf (P ) = 89 ( 21 ) + 2( 12 ) = 16

17 16 ,

1 ) + 1( 3 ) + 6. Lf (P ) = 0( 25 5 25

1 1 16 ( 4 )

1 1 1 1 16 ( 4 ) + 4 ( 2 )

1 1 1 1 9 1 16 ( 2 ) + 16 ( 2 ) + 4 ( 4 ) +

=

1(21) =

      9. Lf (P ) = 0 π6 + 21 π3 + 0 π2 = 6π ,

19 25

Uf (P ) = 1( 34 ) +

3 , 16

=

14 , 25

1( 12 ) =

5 , 16

9 8

Uf (P ) =

10. Lf (P ) = 12 ( 3π ) + 0( π6 ) + (−1)( π2 ) = − π3 ,

1 1 1 1 16 ( 2 ) + 4 ( 4 ) +

 

1 π 2 6

    + 1 π3 + 1 π2 =

Uf (P ) = 1( π3 ) + 12 ( π6 ) + 0( π2 ) =

11π 12 5π 12

11. (a) Lf (P ) ≤ Uf (P ) but 3 ≤ 2.  1 (b) Lf (P ) ≤ f (x) dx ≤ Uf (P ) but 3 ≤ 2 ≤ 6. (c) Lf (P ) ≤



−1 1

−1

f (x) dx ≤ Uf (P )

but 3 ≤ 10 ≤ 6.

12. (a) Lf (P ) = (x0 + 3)(x1 − x0 ) + (x1 + 3)(x2 − x1 ) + · · · + (xn−1 + 3)(xn − xn−1 ), Uf (P ) = (x1 + 3)(x1 − x0 ) + (x2 + 3)(x2 − x1 ) + · · · + (xn + 3)(xn − xn−1 )

(b) For each index i 1 xi−1 + 3 ≤ (xi−1 + xi ) + 3 ≤ xi + 3 2 Multiplying by Δxi = xi − xi−1 gives

2  1 (xi−1 + 3)Δxi ≤ x2i − xi−1 + 3(xi − xi−1 ) ≤ (xi + 3)Δxi . 2 that Summing from i = 1 to i = n, we find   2 2 1  Lf (P ) ≤ x12 − x 0 + 3(x1 − x0 ) · · · + 1 xn2 − xn−1 + 3(xn − xn−1 ≤ Uf (

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

230

No

SECTION 5.2 The middle sum collapses to  1 1 2 2 xn − x0 + 3(xn − x0 ) = (b2 − a2 ) + 3(b − a) 2 2 Thus  b 1 (x + 3)dx = (b2 − a2 ) + 3(b − a) 2 a

13. (a) Lf (P ) = −3x1 (x1 − x0 ) − 3x2 (x2 − x1 ) − · · · − 3xn (xn − xn−1 ), Uf (P ) = −3x0 (x1 − x0 ) − 3x1 (x2 − x1 ) − · · · − 3xn−1 (xn − xn−1 ) (b) For each index i   −3xi ≤ − 32 xi + xi−1 ≤ −3xi−1 .

Multiplying by Δxi = xi − xi−1 gives

  2 ≤ −3xi−1 Δxi . −3xi Δxi ≤ − 32 xi 2 − xi−1

Summing from i = 1 to i = n, we find that

    Lf (P ) ≤ − 32 x1 2 − x0 2 − · · · − 23 xn 2 − x2n−1 ≤ Uf (P ).

The middle sum collapses to

  −23 xn 2 − x0 2 = − 23 (b2 − a2 ).

Thus

3 Lf (P ) ≤ − (b2 − a2 ) ≤ Uf (P ) so that 2



b a

3 −3x dx = − (b2 − a2 ). 2

14. (a) Lf (P ) = (1 + 2x0 )(x1 − x0 ) + (1 + 2x1 )(x2 − x1 ) + · · · + (1 + 2xn−1 )(xn − xn−1 ), Uf (P ) = (1 + 2x1 )(x1 − x0 ) + (1 + 2x2 )(x2 − x1 ) + · · · + (1 + 2xn )(xn − xn−1 ) (b) For each index i 1 + 2xi−1 ≤ 1 + (xi−1 + xi ) ≤ 1 + 2xi Multiplying by Δxi = xi − xi−1 gives   (1 + 2xi−1 ) Δxi ≤ (xi − xi−1 ) + xi 2 − x2i−1 ≤ (1 + 2xi ) Δxi .

Proceeding as before, we get

a 15.

−1 2

(x2 + 2x − 3) dx

b

(1 + 2x) dx = (b − a) + (b2 − a2 )

16.

0

(x3 − 3x) dx 3



17.



2π 0

2

t sin(2t + 1) dt

18.



1

4

t dt t2 + 1

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

No

SECTION 5.2 19.

20.

21. Δx1 = Δx2 = 81 , m1 = 0, m2 =

1 4

Δx3 = Δx4 = Δx5 =

1 , 4

m3 = 21,

m4 = 1, m5 =

3 2

f (x1∗ ) = 18 , f (x∗2 ) = 83 , f (x∗3 ) = 43 , f (x∗4 ) = 54 , f (x5∗ ) = M1 = 41 , M 2 = 21, (a) Lf (P ) = 22.



25 32

M 3 = 1, M4 = (b) S ∗ (P ) =

15 16

3 , 2

3 2

M5 = 2

(c) Uf (P ) =

39 32

1

2x dx = 1.

0

23.

3 (xn − xn−1 ) Lf (P ) = x0 3 (x1 − x0 ) + x1 3 (x2 − x1 ) + · · · + xn−1

Uf (P ) = x1 3 (x1 − x0 ) + x2 3 (x2 − x1 ) + · · · + xn 3 (xn − xn−1 )

For each index i

  3 2 + xi−1 ≤ xi 3 x3i−1 ≤ 41 xi 3 + xi 2 xi−1 + xi xi−1

and thus by the hint

  x3i−1 (xi − xi−1 ) ≤ 41 xi 4 − x4i−1 ≤ xi 3 (xi − xi−1 ).

Adding up these inequalities, we find that

  Lf (P ) ≤ 14 xn 4 − x0 4 ≤ Uf (P ).  1 1 1 x3 dx = . Since xn = 1 and x0 = 0, the middle term is : 4 4 0 24. (a) Lf (P ) = x0 4 (x1 − x0 ) + x1 4 (x2 − x1 ) + · · · + xn−1 4 (xn − xn−1 ), Uf (P ) = x1 4 (x1 − x0 ) + x2 4 (x2 − x1 ) + · · · + xn 4 (xn − xn−1 )

(b) For each index i xi−1 4

3

2

5

2

3

xi + xi xi−1 + xi xi−1 + xi xi−1 + xi−1 ≤ Multiplying by Δxi = xi − xi−1 gives 4

4

≤ xi 4

 5 xi−1 4 Δxi ≤ 1  ≤ xi 4 Δxi . 5 xi − xi−1 5

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

232

No

SECTION 5.2 Summing and collapsing the middle sum gives  1 Lf (P ) ≤ xn 5 − x0 5 ≤ Uf (P ), 5 Thus  1 1 1 x4 dx = (15 − 05 ) = . 5 5 0

25. Necessarily holds: Lg (P ) ≤

b

a

g(x) dx <

b a

f (x) dx ≤ Uf (P ).

26. Need not hold. Consider the partition {0, 2, 3} on [0, 3] where f (x) = x and g (x) = 1. b  1 Then a f (x) dx = 4 and ab g(x) dx = 3, but Lg (P ) = 3 and Lf (P ) = 2. 2 b b 27. Necessarily holds: Lg (P ) ≤ a g(x) dx < a f (x) dx

28. Need not hold. Consider the partition {0, 1, 3} on [0, 3] where f (x) = 2 and g (x) = 3 − x. b b 1 Then a f (x) dx = 6 and a g(x) dx = 4 , but Ug (P ) = 7 and Uf (P ) = 6. 2 29. Necessarily holds: Uf (P ) ≥

b a

f (x) dx >

b a

g(x) dx

30. Need not hold. Use the same counter example as Exercise 30. 31. Let P = {x0 , x1 , x 2 , . . . , xn } be a regular partition of [a, b] and let Δx = (b − a)/n. Since f is increasing on [a, b], Lf (P ) = f (x0 )Δx + f (x1 )Δx + · · · + f (xn−1 )Δx and Uf (P ) = f (x1 )Δx + f (x2 )Δx + · · · + f (xn )Δx. Now, Uf (P ) − Lf (P ) = [f (xn ) − f (x0 )]Δx = [f (b) − f (a)]Δx. 32. Proceed as in Exercise 31. x > 0 for x ∈ [0, 2]. Thus, f is increasing on [0, 2]. 33. (a) f ′ (x) = √ 1 + x2 (b) Let P = {x0 , x1 , . . . , x n } be a regular partition of [0, 2] and let Δx = 2/n By Exercise 30,

0 2

f (x) dx − Lf (P ) ≤ |f (2) − f (0)|

It now follows that = 2.96 0 2 ∼ f (x) dx

0

2

f (x) dx − Lf (P ) < 0.1

if

√ 2( 5 − 1) ∼ 2.47 2 = = n n n n > 25.

(c) −2x 34. (a) f ′ (x) = (1 + x2 )2 < 0 on (0, 1)



f is decreasing.

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

No

SECTION 5.2 (b) Uf (P ) − so need

1 0

f (x) dx ≤ |f (1) − f (0)|Δx = | 21 − 1| n1 =

1 . 2n

1 = 0.05, or n = 10. 2n

(c) Using Uf (P ) with n = 10, we have



1

0

1 ∼ 0.78 dx = 1 + x2

35. Let S be the set of positive integers for which the statement is true. Since that k ∈ S. Then

1(2) = 1, 1 ∈ 2

k(k + 1) +k+1 2 (k + 1)(k + 2) = 2

1 + 2 + · · · + k + k + 1 = (1 + 2 + · · · + k ) + k + 1 =

Thus, k + 1 ∈ S and so S is the set of positive integers. 36. See Exercise 5 in section 1.8. 37. Let f (x) = x and let P = {x0 , x1 , x2 , . . . , x n } be a regular partition of [0, b]. Then Δx ib xi = , i = 0, 1, 2, . . . , n. n (a) Since f is increasing on [0, b],        b b 2b (n − 1)b Lf (P ) = f (0) + f +f + ···+ f n n n n   2b b (n − 1)b b = 0+ + + ···+ n n n n b2 [1 + 2 + · · · + (n − 1)] n2         b 2b (n − 1)b b Uf (P ) = f +f + ···+ f + f (b) n n n n   b b 2b (n − 1)b +b + = + ···+ n n n n =

(b)

=

b2 [1 + 2 + · · · + (n − 1) + n] n2

(c) By Exercise 35,  1 2 = b 1− 2    1 2 b2 n(n + 1) 1 2 n2 + n = b 1+ b = Lf (P ) = 2 · 2 n 2 2 n2

b2 (n − 1)n 1 2 = b Lf (P ) = 2 · 2 n 2



n2 − n n2



∗ (d) For any partition P, Lf (P ) ≤ § (P ) ≤ Uf (P ). Since

1 n 1 n





=

1 2 b (1 − ||P ||) 2

=

1 2 b (1 + ||P ||) 2

lim L (P ) = lim f

||P ||→0

lim ( )

1 b2 by the pinching theorem

1 2 Uf (P ) = 2 b , ||P ||→0

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

234

No

SECTION 5.2

38. Let f (x) = x2 and let P = {x0 , x1 , x2 , . . . , x n } be a regular partition of [0, b]. Then Δx = b/n an ib xi = , i = 0, 1, 2, . . . , n. n (a) Since f is increasing on [0, b],        b b 2b (n − 1)b Lf (P ) = f (0) + f +f + ···+ f n n n n   b2 (n − 1)2 b2 b 4b2 = 0 + 2 + 2 + ···+ n n n n =

b3 [1 + 22 + · · · + (n − 1)2 ] n3

        2b (n − 1)b b b +f + ···+ f + f (b) Uf (P ) = f n n n n   2 b 4b2 n2 b2 b = + 2 + ···+ 2 2 n n n n

(b)

=

b3 [1 + 22 + · · · + n2 ] n3

(c) By Exercise 36, Lf (P ) =

b3 (n − 1)n(2n − 1) = b3 · 6 n3

b3 n(n + 1)(2n − 1) Uf (P ) = 3 · = b3 n 6





2n3 − 3n2 + n 6n3 2n3 + 3n2 + n 6n3





=

1 3 b = (2 − 3||P || + ||P ||2 ) 6

=

1 3 b = (2 + 3||P || + ||P ||2 ) 6

(d) For any partition P, Lf (P ) ≤ § ∗ (P ) ≤ Uf (P ). Since 1 lim Lf (P ) = lim Uf (P ) = b3 , ||P ||→0 3

||P ||→0

1 lim S ∗ (P ) = b3 by the pinching theorem. 3

||P ||→0

39. Choose each x∗i so that f (x∗i ) = mi . Then Si∗(P ) = Lf (P ). Similarly, choosing each x∗i so that f (x∗i ) = Mi gives S ∗i (P ) = Uf (P ). 1 Also, choosing each x∗i so that f (x∗i ) = (mi + Mi ) (they exist by the intermediate value theorem 2 gives 1 1 Si∗ (P ) = (m1 + M1 )Δx1 + · · · + (mn + Mn )Δxn 2 2 1 = [m1 Δx1 + · · · + mn Δxn + M1 Δx1 + · · · + Mn Δxn ] 2 1 = [Lf (P ) + Uf (P )]. 2

181 = 7.24, U 8.84 221 = ∼ ∼ 40. (a) Lf (P ) = f (P ) = 25 25 1 = 7.98 (c) S ∗ (P ) ∼ ∼ 8.04 (b) [L (P ) + U (P )] 402 =

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

No

SECTION 5.3 ∼ 0.7105 U f (P ) =

∼ 0.6105, 41. (a) Lf (P ) = (b)

1 ∼ 0.6605 [Lf (P ) + Uf (P )] = 2

∼ 1.1824 U f (P ) =

∼ 1.0224, 42. (a) Lf (P ) = (b)

1 ∼ 1.1024 [Lf (P ) + Uf (P )] = 2

∼ 0.53138, 43. (a) Lf (P ) = (b)

(c) S ∗ (P ) ∼ = 0.6684

(c) S ∗ (P ) ∼ = 1.1074

Uf (P ) ∼ = 0.73138

1 ∼ 0.63138 [Lf (P ) + Uf (P )] = 2

= 0.63926 (c) S ∗ (P ) ∼

SECTION 5.3 1. (a)

(b)

(c)

  

5

f (x) dx = 0

(f)

2. (a)

(b)

(c)

(d)

(e)

     

2



2



5

f (x) dx = 1

f (x) dx = 1

0

(e)



2

f (x) dx = 4



f (x) dx = −

3

f (x) dx = 1

f (x) dx = 3

f (x) dx = −4

0

8





4

f (x) dx = 11 − 5 = 6

1

4

f (x) dx = −7

3

1



2

f (x) dx = 1





f (x) dx = −

f (x) dx = 5 − 6 = −1

0

5

f (x) dx −

4

4

f (x) dx = 4 − 6 = −2

0



8

1

8

f (x) dx = 4 + 1 = 5

1



f (x) dx = 0 (f)



1

3

 44

1

f (x) dx −



f (x) dx = −

f (x) dx = −

8

8



1

f (x) dx −

0

1

4

5

2

0

5

5



f (x) dx +

0

2

(d) 0





4

f (x) dx −



3

f (x) dx −

4

f (x) dx = 5 − 7 = −2

3

1

f (x) dx = 11 − (−2) = 13

8

f (x) dx = −6

3. With P =

1,

3 2

,2



1 , we have and f (x) = x 7 05≤

dx 

1

2

U (P )

5 < 1. 6

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

236

No

SECTION 5.3

4. Using P = {0, 21 , 1}, we have 0.6 < 0.65 = Lf (P ) ≤

(d) F (2) =

6. (a) F (π) =



(c) F ′ ( π2 ) =

(e) −F (x) = 7. F ′ (x) =

1

1 dx ≤ Uf (P ) = 0.9 < 1. 1 + x2

0

√ (b) F ′ (x) = x x + 1

5. (a) F (0) = 0 



√ (c) F ′ (2) = 2 3

√ t t + 1 dt

2

(e) −F (x) =

0 π

sin π2 =



0

√ t t + 1 dt

x

(b) By Theorem 5.3.5, F ′ (x) = x sin x.  2π t sin t dt (d) F (2π) =

t sin t dt = 0 π

π 2



π 2

π

π

t sin t dt.

x

1 ; x2 + 9

(a)

1 10

√ 8. F ′ (x) = − x2 + 1

√ (a) − 2

√ 9. F ′ (x) = −x x2 + 1;

(a)

(b)

√ 2

1 9

(c)

4 37

(b) −1

√ (c) − 12 5

(b) 0

√ (c) − 14 5

(d)

−2x + 9) 2

(x2

−x (d) √ x2 + 1  √ x2 x2 + 1 + √ (d) − x2 + 1

10. F ′ (x) = sin πx

(a) 0

(b) 0

(c) 1

(d) π cos πx

11. F ′ (x) = cos πx;

(a) −1

(b) 1

(c) 0

(d) −π sin πx

12. F ′ (x) = (x + 1) 3

(a) 0

(b) 1

(c)

13. (a) Since P1 ⊆ P2 , Uf (P2 ) ≤ Uf (P1 )

but

5 ≤ 4.

(b) Since P1 ⊆ P2 , Lf (P1 ) ≤ Lf (P2 )

but

5 ≤ 4.

14. (a) constant functions.

27 8

(d) 3(x + 1) 2

(b) constant functions.

15. constant functions 16. We know this is true for a < c < b. Assume a < b. If c = a or c = b, the equality become  b f (x) dt = f (x) dt, trivially true. If c < a, we get a



a

b

f (t) dt +  ac



c

b

f (t) dt = −



c

a

f (t) dt +



b

c

The other possible cases are proved in a similar manner.

x−1

f (t) dt =



b

f (t) dt, as desired a

17.

F ′ (x) =

= 0 =⇒ x = 1 is a critical number. 1 + x2 2 (1 + x ) − 2x(x − 1) 1 > 0 means x = 1 is a local minimum. F ′′ (x) = so F ′′ (1) = 2

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

No

SECTION 5.3 18.

F ′ (x) =

x−4 =0 1 + x2

F ′′ (x) =

1 (1 + x2 ) − 2x(x − 4) , so F ′′ (4) = > 0 means x = 4 (1 + x2 )2 17

=⇒

x = 4 is a critical number.

is a local minimum. 1 > 0 for x > 0. x Thus, F is increasing on (0, ∞);

1 < 0 for x > 0. x2 The graph of F is concave down on

19. (a) F ′ (x) =

(b) F ′′ (x) = −

there are no critical numbers.

there are no points of inflection.

(c)

20. (a) F ′ (x) = x(x − 3)2 ,

(b) F ′′ (x) = (x − 3)2 + 2x(x − 3) = 3(x − 3)(x − 1

F is increasing on [0, ∞);

The graph of F is concave up on (−∞, 1) ∪ (3,

F is decreasing on (−∞, 0];

The graph of F is concave down on (1, 3);

critical numbers 0, −3.

Inflection points at x = 1, x = 3.

(c)

y 6 4 2 −1

1

2

3

x

21. (a) F is differentiable, therefore continuous (c) F ′ (1) = f (1) = 0

(b) F ′ (x) = f (x) f is differentiable; F ′′ (d) F ′′ (1) = f ′ (1) > 0

(e) f (1) = 0 and f increasing (f ′ > 0) implies f < 0 on (0, 1) and f > 0 on (1, ∞). Since F ′ = f, F is decreasing on (0, 1) and increasing on (1, ∞); F (0) = 0 implies F (1) < 0. 22. (a) G is differentiable, therefore continuous (c) G′ (1) = g(1) = 0

(b) G′ (x) = g (x) and g is differentiable; G′ (d) G′′ (x) = g ′ (x) < 0 for x < 1

(e) G′ (x) = g (x) > 0 for all x = 0.

G′′ (x) = g ′ (x) > 0 for x > 1

P1: PBU/OVY JWDD027-05

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

238

No

SECTION 5.3

23. (a)

(b)

y

y

4 6 2

4

−1

1

2

3

2

x −1

F (x) =

⎧ ⎨ 2x − 1 x2 + 5 2 2 ⎩

2x +


Similar Free PDFs