Chem Equation SHeet PDF

Title Chem Equation SHeet
Author Alexander Tran
Course General Chemistry Ib
Institution Stony Brook University
Pages 2
File Size 136.8 KB
File Type PDF
Total Downloads 99
Total Views 149

Summary

A general sheet of common equations and formulas used throughout the course....


Description

DAT General Chemistry Equation Sheet

Chapter 0: General and Lab Concepts Review

Chapter 5: Gases

Dilutions

Pressure

Percent Error Absorbance (Spectrophotometer)

𝑀" 𝑉" = 𝑀% 𝑉% or 𝐶" 𝑉" = 𝐶% 𝑉% (𝐴 − 𝑇) × 100 𝑇 𝐴𝑏𝑠 = 𝜀𝑐𝑙

𝑀'𝑜𝑟'𝐶 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛! 𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 ! 𝑇 = 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐴 = 𝑎𝑐𝑡𝑢𝑎𝑙

𝜀 = 𝑚𝑜𝑙𝑎𝑟'𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 ' 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡'(𝑚𝑜𝑙𝑎𝑟' 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑖𝑡𝑦) 𝑐 = 𝑠𝑎𝑚𝑝𝑙𝑒 D 𝑠'𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑙 = 𝑝𝑎𝑡ℎ'𝑙𝑒𝑛𝑔𝑡ℎ

Chapter 2: Atomic and Electronic Structure Energy of a photon

Absorption/ Emission Line Spectra Kinetic Energy of an electron (Photoelectric Effect)

𝐸GHIJIK = ℎ𝑓 =

ℎ𝑐 𝜆

ℎ = 𝑃𝑙𝑎𝑛𝑐𝑘 D𝑠'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (6.63 × 10RST 𝐽 ∙ 𝑠)

𝑓 = 𝑝ℎ𝑜𝑡𝑜𝑛 𝑠'𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐 = 𝑠𝑝𝑒𝑒𝑑'𝑜𝑓 '𝑙𝑖𝑔ℎ𝑡 (3.0 × 10Y 𝑚⁄𝑠 )' 𝜆 = 𝑝ℎ𝑜𝑡𝑜𝑛D𝑠' 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ' D

𝛥𝐸 = 𝐸GHIJIK !

!

𝐾𝐸^R = 𝐸GHIJIK − 𝜙

𝜙 = 𝑤𝑜𝑟𝑘 '𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛𝑖𝑚𝑢𝑚'𝑒𝑛𝑒𝑟𝑔𝑦 '𝑛𝑒𝑒𝑑𝑒𝑑' 𝑡𝑜'𝑖𝑜𝑛𝑖𝑧𝑒'𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛)'

Average Kinetic Energy Root-MeanSquare Speed (𝒗) Ideal Gas Law Boyle’s Law Charles’ Law Avogadro’s Law Combined Gas Law Standard Temp. & Pressure (STP) Standard Conditions Density

Dalton’s Law of Partial Pressures

Chapter 7: Chemical Solutions Molarity Molality Henry’s Law Freezing Point Depression Boiling Point Elevation Vapor Pressure Depression (Raoult’s Law) Osmotic Pressure (𝝅)

𝑚𝑜𝑙𝑒𝑠aIbcJ^ 𝑀= 𝐿aIbcJeIK 𝑚𝑜𝑙𝑒𝑠aIbcJ^ 𝑚= 𝑘𝑔aIbf^KJ 𝑃g = 𝑘h [𝐴]! 𝛥𝑇l = −𝑖𝐾l 𝑚! 𝛥𝑇n = 𝑖𝐾n 𝑚 !

𝑃aIbK = 𝜒aIbf 𝑃aIbf q !

𝜋 = 𝑖𝑀𝑅𝑇!

Dalton’s Law of Partial Pressures Graham’s Law of Effusion 𝑃g = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 '𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 '𝑜𝑓'𝑔𝑎𝑠 '𝐴 ! 𝑘h = 𝐻𝑒𝑛𝑟𝑦 D𝑠'𝐿𝑎𝑤 '𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡'! (𝑣𝑎𝑟𝑖𝑒𝑠'𝑝𝑒𝑟 '𝑝𝑟𝑜𝑏𝑙𝑒𝑚)! [A]!=!conc.!of!gas!A! 𝑖 = 𝑣𝑎𝑛D𝑡'𝐻𝑜𝑓𝑓 '𝑓𝑎𝑐𝑡𝑜𝑟! 𝐾l = 𝐹. 𝑃. 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡! 𝑚 = 𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦! 𝑖 = 𝑣𝑎𝑛D𝑡'𝐻𝑜𝑓𝑓 '𝑓𝑎𝑐𝑡𝑜𝑟! 𝐾n = 𝐵. 𝑃. 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡! 𝑚 = 𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦! 𝑃aIbK = 𝑉𝑃'𝑜𝑓'𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛! 𝜒aIbf = 𝑚𝑜𝑙'𝑓𝑟𝑎𝑐𝑡'𝑜𝑓 '𝑠𝑜𝑙𝑣𝑒𝑛𝑡! 𝑃aIbf q = 𝑉𝑃'𝑜𝑓'𝑝𝑢𝑟𝑒 '𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ! 𝑀 = 𝑚𝑜𝑙𝑎𝑟𝑖𝑡𝑦'𝑜𝑓'𝑠𝑜𝑙𝑢𝑡𝑒! 𝑖 = 𝑣𝑎𝑛D𝑡'𝐻𝑜𝑓𝑓 '𝑓𝑎𝑐𝑡𝑜𝑟!

𝑅 = 0.0821'

𝐿 ⋅ 𝑎𝑡𝑚

𝑚𝑜𝑙 ⋅ 𝐾

𝑇 = 𝑡𝑒𝑚𝑝. 𝑖𝑛'𝐾𝑒𝑙𝑣𝑖𝑛

Real Gas Equation

𝐹 𝑃= ! 𝐴 '𝐾𝐸xfy = ' 3z2 𝑅𝑇'!

Equation

𝐽

𝑚𝑜𝑙 ∙ 𝐾

!

𝐽 ! 𝑚𝑜𝑙 ∙ 𝐾 𝑀~ = 𝑚𝑜𝑙𝑎𝑟'𝑚𝑎𝑠𝑠 ! !

𝑅 = 8.314'

𝑛 = #'𝑜𝑓 '𝑚𝑜𝑙𝑒𝑠 𝐿 ⋅ 𝑎𝑡𝑚 𝑅 = 0.0821' 𝑚𝑜𝑙 ⋅ 𝐾

1 ! 𝑃 𝑉 ∝ 𝑇! 𝑉 ∝ 𝑛! 𝑃" 𝑉" 𝑃% 𝑉% = ! 𝑛" 𝑇" 𝑛% 𝑇% P=1!atm! T=273!K! 𝑉∝

*1!mol!of!gas!=!22.4!L! at!STP!

All!aqueous!species!@!1M!! All!gaseous!species!@1!atm!! T=298!K!

𝑃(𝑀𝑀) 𝑚 = ! 𝑅𝑇 𝑣

𝑃JIJxb = 𝑃g + 𝑃n + ⋯!

! !

𝑀𝑀 = 𝑚𝑜𝑙𝑎𝑟'𝑚𝑎𝑠𝑠 𝐿 ⋅ 𝑎𝑡𝑚 𝑅 = 0.0821' 𝑚𝑜𝑙 ⋅ 𝐾 𝑚 = 𝑚𝑎𝑠𝑠

𝑣 = 𝑣𝑜𝑙𝑢𝑚𝑒

𝑃g = 𝜒g 𝑃JIJxb !

𝜒g = 𝑚𝑜𝑙'𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛! '𝑜𝑓'𝑔𝑎𝑠 '𝐴 !

𝑎𝑛% )(𝑉 𝑉% − 𝑛𝑏) = 𝑛𝑅𝑇! !

𝑎'&'𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠! 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐'𝑡𝑜 '𝑒𝑎𝑐ℎ'𝑔𝑎𝑠! 𝑎𝑛% '𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠'𝑓𝑜𝑟'! 𝑉% 𝐼𝑀𝐹𝑠'! −𝑛𝑏'𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠'𝑓𝑜𝑟'! 𝑣𝑜𝑙𝑢𝑚𝑒!

𝑟" 𝑀~% ! =} 𝑀~" 𝑟% (𝑃 +

Chapter 8: Chemical Kinetics

Arrhenius

𝑅 = 8.314'

𝑃𝑉 = 𝑛𝑅𝑇 !

!

Rate Constant Units

𝐴 = 𝑎𝑟𝑒𝑎

3𝑅𝑇 𝑣 ='} '! 𝑀~

!

General Rate Law

𝐹 = 𝑓𝑜𝑟𝑐𝑒

A+ BàC+ D 𝑟𝑎𝑡𝑒 = 𝑘[𝐴]~ [𝐵]K

0'𝑜𝑟𝑑𝑒𝑟: 𝑘 = 𝑀" ∙ 𝑠 R" 1aJ '𝑜𝑟𝑑𝑒𝑟: 𝑘 = 𝑠 R" 2K† '𝑜𝑟𝑑𝑒𝑟:'𝑘 = 𝑀R" ∙ 𝑠 R" 3‡† '𝑜𝑟𝑑𝑒𝑟:'𝑘 = 𝑀R% ∙ 𝑠 R"

𝑘 = 𝐴𝑒 Rˆ‰⁄ Š‹

𝑟 = 𝑟𝑎𝑡𝑒 '𝑜𝑓'𝑒𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑀 = 𝑚𝑜𝑙𝑎𝑟'𝑚𝑎𝑠𝑠'! !

𝑘 = 𝑟𝑎𝑡𝑒'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡! 𝑚'&'𝑛 = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑'! e𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦! 𝑘 = 𝑟𝑎𝑡𝑒'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡! 𝑀 = 𝑚𝑜𝑙𝑎𝑟𝑖𝑡𝑦! s= 𝑠𝑒𝑐𝑜𝑛𝑑𝑠!

𝑘 = 𝑟𝑎𝑡𝑒'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐴 = 𝑢𝑛𝑖𝑞𝑢𝑒 '𝑡𝑜 '𝑒𝑎𝑐 ℎ'𝑟𝑥𝑛 𝐸x = 𝑎𝑐𝑡. 𝑒𝑛𝑒𝑟𝑔𝑦 𝐽 ' 𝑅 = 8.314' 𝑚𝑜𝑙 ∙ 𝐾 𝑇 = 𝑡𝑒𝑚𝑝. 𝑖𝑛'𝐾𝑒𝑙𝑣𝑖𝑛

www.datbootcamp.com

DAT General Chemistry Equation Sheet

Chapter 9: Chemical Equilibria 𝐾• = '

Equilibrium Constant Expressions

[G‡I†c•Ja]

[‡^x•JxKJa ]

𝐾^— = '

𝐾š = ' 𝑄 ='

Reaction Quotient (Q) Solubility Product Constant (𝑲𝒔𝒑 )

𝐾aG

𝑘 = 𝑟𝑎𝑡𝑒'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑃 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑘˜I‡™x‡†

𝑘‡^f^‡a^ š›œ•žŸ ¡¢

šœ£‰ ¡‰¤¡¢

[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠] ! [𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]

[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠] ! =' [𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠]

𝑄 > 𝐾 = 𝑠ℎ𝑖𝑓𝑡'𝑙𝑒𝑓𝑡 𝑄 < 𝐾 = 𝑠ℎ𝑖𝑓𝑡'𝑟𝑖𝑔ℎ𝑡 𝑄 = 𝐾 = 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 ! !

Chapter 10: Acid-Base Equilbria & Titrations Ionization Constant of Water pH & pOH

[H+] & [OH-] Weak Acids

Weak Bases

pKa & pKb

Neutralization

Reaction Buffers

𝐾™ = [𝐻S𝑂« ] ['𝑂𝐻R ] = 1 × 10R"T @!25!°C

𝑝𝐻 = ' −log'[𝐻« ] 𝑝𝑂𝐻 =' −log'[𝑂𝐻 R ] 𝑝𝐻 + 𝑝𝑂𝐻 = 14 [𝐻« ] = 10RGh [𝑂𝐻R ] = 10RG¬h [𝐻« ][𝑂𝐻R ] = 1 ∗ 10R"T 𝐻𝐴 + 𝐻% 𝑂 ⇌ 𝐻S 𝑂« + 𝐴R [𝐻 𝑂« ][𝐴R ] 𝐾x =' S [𝐻𝐴] [𝐻« ] = ®𝐾x [𝐻𝐴]

𝐴R + 𝐻% 𝑂 ⇌ 𝐻𝐴 + 𝑂𝐻 R [𝑂𝐻 R ][𝐻𝐴] 𝐾¯ = ' [𝐴R ] R [𝑂𝐻 ] = ®𝐾¯ [𝐴R ] 𝑝𝐾x = ' −log'[𝐾x ] 𝑝𝐾¯ = ' −log'[𝐾¯ ] 𝑝𝐾x + 𝑝𝐾¯ = 14 𝐾™ = 𝐾x × '𝐾¯ = 1 ∗ 10R"T 𝑛g 𝑀g 𝑉g = 𝑛n 𝑀n 𝑉n [𝐴R ] 𝑝𝐻 = 𝑝𝐾x + log' ! [𝐻𝐴]

Chapter 13: Nuclear Reactions Kinetics 𝑁 = 𝑁q 𝑒 R±J st (always 1 ln 𝑁 = ln 𝑁q − 𝑘𝑡 order) 0.693 𝑡"/% = 𝑘 Nuclear Binding Energy

𝐸 = 𝛥𝑚𝑐 %

[𝐻« ] = 𝑐𝑜𝑛𝑐. 𝑜𝑓'𝑝𝑟𝑜𝑡𝑜𝑛𝑠' [𝑂𝐻R ] = 𝑐𝑜𝑛𝑐. 𝑜𝑓'ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑𝑒 𝐾x = 𝑎𝑐𝑖𝑑'𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ' 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐾¯ = 𝑏𝑎𝑠𝑒'𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Larger 𝐾x = smaller p𝐾x =stronger acid Larger 𝐾¯ = smaller p𝐾¯ =stronger base 𝑛g = #'𝑜𝑓 '𝑚𝑜𝑙𝑒𝑠'𝐻 « 𝑛n = #'𝑜𝑓'𝑚𝑜𝑙𝑒𝑠'𝑂𝐻 R [𝐴R ] = 𝑐𝑜𝑛𝑐. 𝑜𝑓 '𝑏𝑎𝑠𝑒! [𝐻𝐴] = 𝑐𝑜𝑛𝑐. 𝑜𝑓'𝑎𝑐𝑖𝑑!

𝑁 = 𝑎𝑚𝑡 '𝑜𝑓 '𝑟𝑎𝑑𝑖𝑜𝑖𝑠𝑜𝑡𝑜𝑝𝑒' 𝑎𝑓𝑡𝑒𝑟'𝑡𝑖𝑚𝑒'𝑡 𝑁q = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙'𝑎𝑚𝑡 𝑘 = 𝑟𝑎𝑡𝑒'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 = 𝑡𝑖𝑚𝑒 𝑡"/% = ℎ𝑎𝑙𝑓'𝑙𝑖𝑓𝑒 *note that 𝑡"/%is independent of concn for 1st order rxns 𝑚 = 𝑚𝑎𝑠𝑠'(𝑀𝑈𝑆𝑇 '𝑏𝑒'𝑖𝑛'𝑘𝑔) 𝑐 = 𝑠𝑝𝑒𝑒𝑑'𝑜𝑓 '𝑙𝑖𝑔ℎ𝑡 𝑚 (3.0 × 10Y ) 𝑠

Chapter 11: Thermodynamics & Thermochemistry Enthalpy (H)

(𝛥𝐻 > 0): 𝑒𝑛𝑑𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐 (𝛥𝐻 < 0):'𝑒𝑥𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐 !

𝛥𝐻˜ = 𝛴𝑛𝛥𝐻°˜(G‡I†c•J) − 𝛴𝑛𝛥𝐻°˜(‡^x•JxKJa)

Enthalpy of Formation First Law of Thermodynamics PressureVolume Work Calorimetry Thermal Energy (q) Heat Curves & Thermal Energy (q) Entropy (S)

Bond Dissociation Energy Gibb’s Free Energy (𝜟𝑮) Gibb’s Free Energy (𝜟𝑮)

𝑛 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡'𝑓𝑟𝑜𝑚'𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 '𝑟𝑥𝑛 𝛥𝐸 = 𝑐ℎ𝑎𝑛𝑔𝑒 '𝑖𝑛'𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑞 = ℎ𝑒𝑎𝑡 𝑤 = 𝑤𝑜𝑟𝑘 𝑃 = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 '𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑤 = −𝑃𝛥𝑉 𝛥𝑉 = 𝑐ℎ𝑎𝑛𝑔𝑒 '𝑖𝑛'𝑣𝑜𝑙𝑢𝑚𝑒

𝛥𝐸 = 𝑞 + 𝑤

𝑞 = −𝐶•xbI‡e~^J^‡ 𝛥𝑇

𝐶•xbI‡e~^J^‡ = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐'ℎ𝑒𝑎𝑡 𝑜𝑓'𝑐𝑎𝑙𝑜𝑟𝑖𝑚𝑒𝑡𝑒𝑟 ' 𝛥𝑇 = 𝑐ℎ𝑎𝑛𝑔𝑒'𝑖𝑛'𝑡𝑒𝑚𝑝.

+𝑞: ℎ𝑒𝑎𝑡 '𝑔𝑎𝑖𝑛𝑒𝑑 '𝑏𝑦'𝑠𝑦𝑠𝑡𝑒𝑚 𝑞 = 𝑚𝐶𝛥𝑇 −𝑞: ℎ𝑒𝑎𝑡 '𝑙𝑜𝑠𝑡 '𝑓𝑟𝑜𝑚 '𝑠𝑦𝑠𝑡𝑒𝑚 𝑞 = 𝑚𝛥𝐻˜caeIK 𝑚 = 𝑚𝑎𝑠𝑠 𝑞 = 𝑚𝛥𝐻fxGI‡e·xJeIK 𝐶 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 'ℎ𝑒𝑎𝑡 𝛥𝑆 = Σ𝑛𝑆G‡I†c•Ja − Σ𝑛𝑆‡^x•JxKJa 𝑆yxa > 𝑆be—ce† > 𝑆aIbe† 𝑆x— > 𝑆aIbe† 𝛥𝐻 = 𝛴𝛥𝐻‡^x•JxKJa − 𝛴𝛥𝐻G‡I†c•Ja '''''''= 𝛴𝛥𝐻¯‡I±^K − 𝛴𝛥𝐻˜I‡~^†

𝑚𝑎𝑘𝑖𝑛𝑔'𝑏𝑜𝑛𝑑𝑠 = 𝑒𝑥𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐 '(−𝛥𝐻) 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 '𝑏𝑜𝑛𝑑𝑠 = 𝑒𝑛𝑑𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐'(+𝛥𝐻) 𝛥𝐺° = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 '𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠! 𝛥𝐺° = 𝛥𝐻° − 𝑇𝛥𝑆° ! 𝛥𝐻° = 𝑒𝑛𝑡 ℎ𝑎𝑙𝑝𝑦! ! 𝑇 = 𝑡𝑒𝑚𝑝. 𝑖𝑛'𝐾𝑒𝑙𝑣𝑖𝑛! 𝛥𝑆° = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦! 𝛥𝐺 = 𝑛𝑜𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 '! 𝛥𝐺 = 𝛥𝐺° + 𝑅𝑇𝑙𝑛𝑄 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠! 𝛥𝐺° = −𝑅𝑇𝑙𝑛𝐾^— ¼ 𝑅 =8.314' ~Ib∙½! ! 𝑄 = 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛'𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡! 𝐾^— = 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 !

Chapter 12: Electrochemistry & Redox Reactions Standard Cell Potential Nernst Equation

Faraday’s

Law

𝐸° = 𝐸°‡^†c•JeIK + 𝐸°IŽe†xJeIK 𝐸° = 𝐸°•xJHI†^ + 𝐸°xKI†^ 𝐸•^bb = 𝐸° −

0.0592 log 𝑄 𝑛

𝑚𝑎𝑠𝑠'𝑜𝑓'𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐼 ∗ 𝑡a ∗ 𝑀𝑊G†J 𝑛∗𝐹

𝑚𝑜𝑙𝑒𝑠'𝑜𝑓 '𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐼 ∗ 𝑡a 𝑛∗𝐹

𝐸•^bb = 𝑛𝑜𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ' 𝑐𝑒𝑙𝑙'𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑛 = #'𝑜𝑓 '𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 't𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝑄 = 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛'𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑀𝑊 = 𝑚𝑜𝑙𝑒𝑐. 𝑤𝑒𝑖𝑔ℎ𝑡' 𝐼 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (Amps) 𝑡a = 𝑡𝑖𝑚𝑒 '(𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 𝑛 = #'𝑜𝑓 '𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 '𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝐹 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 D 𝑠'𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ' 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠 )' (96485' 𝑚𝑜𝑙'𝑒 R

www.datbootcamp.com...


Similar Free PDFs