Complete Lecture Notes PDF

Title Complete Lecture Notes
Author Tyler Wright
Course Linear Algebra 2
Institution University of Bristol
Pages 47
File Size 580.2 KB
File Type PDF
Total Downloads 52
Total Views 158

Summary

Notes for the whole course....


Description

Linear Algebra 2 Notes by Tyler Wright github.com/Fluxanoia

fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today, or rigorous. Any result of the above is not the author’s fault. These notes are marked as unsupported, they were supported up until January 2020.

0

Notation

We commonly deal with the following concepts in Linear Algebra 2 which I will abbreviate as follows for brevity: Term Notation Additive identity of set X 0X Multiplicative identity of a set X 1X Set of linear maps from V to W L(V, W ) L(V, V ) End(V ) 1

Contents 0 Notation

1

1 Groups, Rings, and Fields 1.1 Groups . . . . . . . . . . . . . . . . . . . . . 1.1.1 Subgroups . . . . . . . . . . . . . . . 1.1.2 Group Homomorphisms . . . . . . . 1.1.3 Properties of Group Homomorphisms 1.2 Rings . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Subrings . . . . . . . . . . . . . . . . 1.2.2 Ring Homomorphisms . . . . . . . . 1.3 Fields . . . . . . . . . . . . . . . . . . . . . 1.3.1 Characteristic of a Field . . . . . . . 1.3.2 Algebraic Closure of Fields . . . . . . 2 Vector Spaces 2.1 Subspaces . . . . . . . . . . . . . . . . . . 2.2 Linear Combinations of Vectors . . . . . . 2.3 Linear Independence . . . . . . . . . . . . 2.3.1 Properties of Linear Independence . 2.4 The Span of a Set . . . . . . . . . . . . . . 2.5 Bases . . . . . . . . . . . . . . . . . . . . . 2.5.1 Properties of Bases . . . . . . . . . 2.6 Dimension . . . . . . . . . . . . . . . . . . 2.6.1 Dimension and Subsets . . . . . . .

. . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

6 6 6 6 6 7 7 7 8 8 8

. . . . . . . . .

9 9 9 9 10 10 10 10 10 10

3 Linear Maps 11 3.1 Properties of Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Nilpotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 The Rank-Nullity Theorem . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Matrices 4.1 Types of Matrices . . . . . . . . . . . . . . 4.2 The Space of Matrices . . . . . . . . . . . 4.3 Matrix Multiplication . . . . . . . . . . . . 4.4 Matrices of Linear Maps . . . . . . . . . . 4.4.1 Matrices of Composed Linear Maps 4.5 Transition Matrices . . . . . . . . . . . . . 4.6 Matrix Transitions . . . . . . . . . . . . . 4.7 Similar Matrices . . . . . . . . . . . . . . . 2

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

13 13 13 14 14 14 14 15 15

5 Eigenspaces and Root Spaces 5.1 Root Vectors . . . . . . . . . . . . . . . 5.1.1 Root Spaces . . . . . . . . . . . . 5.1.2 Properties of the Root Space . . . 5.1.3 Primary Decomposition Theorem 5.2 Eigenvectors . . . . . . . . . . . . . . . . 5.2.1 Eigenspaces . . . . . . . . . . . . 5.2.2 Nilpotent Maps on Eigenspaces . 5.2.3 Eigenvalues on Nilpotent Maps . 5.2.4 Multiplicity . . . . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

6 Direct Sums and Projections 6.1 Direct Sums . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Bases of External Direct Sums . . . . . . . . . 6.1.2 The Addition Map for Direct Sums . . . . . . 6.1.3 Consequences of Internal Direct Sums . . . . . 6.2 Projections . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Idempotence and Projections . . . . . . . . . 6.3 f -invariance . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Matrices of Linear Maps (using f -invariance) .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . .

16 16 16 16 17 18 19 19 19 19

. . . . . . . .

20 20 20 20 21 21 21 21 22

7 Quotient Spaces 7.1 Understanding the Quotient Space . . . 7.2 Linear Map to the Quotient Space . . . . 7.3 Isomorphisms formed by Linear Maps . . 7.4 Linear Operators on the Quotient Space 7.5 Matrices formed using Quotient Spaces .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

23 23 24 24 25 25

8 Dual Spaces 8.1 Dual Bases . . . . . . . . . . . . . . . . 8.2 The Annihilator . . . . . . . . . . . . . 8.2.1 Properties of the Annihilator . 8.3 Isomorphism to the Double Dual . . . 8.4 Transposing Linear Maps . . . . . . . . 8.5 Transposed Linear Maps and Matrices

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

26 26 27 27 28 28 28

9 Rank and Determinants 9.1 Elementary Row Operations . . . . . . . . . . . 9.1.1 Elementary Matrices . . . . . . . . . . . 9.1.2 Echelon Form . . . . . . . . . . . . . . . 9.1.3 Decomposition via Elementary Matrices

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

29 29 29 29 29

3

. . . . . .

9.2 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Rank of Matrices from Linear Maps . . . . . . 9.2.2 Partially Diagonalising Matrices . . . . . . . . 9.3 Permutations . . . . . . . . . . . . . . . . . . . . . . 9.4 Properties of Sn . . . . . . . . . . . . . . . . . . . . . 9.5 Decomposition of Permutations . . . . . . . . . . . . 9.6 Parity of Permutations . . . . . . . . . . . . . . . . . 9.6.1 The Signature . . . . . . . . . . . . . . . . . . 9.6.2 The Alternating Group . . . . . . . . . . . . . 9.7 Determinants . . . . . . . . . . . . . . . . . . . . . . 9.7.1 Multi-linearity of the Determinant . . . . . . . 9.7.2 Alternativity of the Determinant . . . . . . . 9.7.3 Normality of the Determinant . . . . . . . . . 9.7.4 The Determinants of Elementary Matrices . . 9.7.5 The Determinant of the Transpose . . . . . . 9.7.6 The Determinant under Matrix Multiplication 9.7.7 The Determinant and Invertibility . . . . . . . 10 Polynomials 10.1 The Set of Polynomials . . . . . . . . . . . . . . . . 10.2 Polynomial Degree . . . . . . . . . . . . . . . . . . 10.3 Degree and Composition in R[x] . . . . . . . . . . . 10.4 Evalutation of Polynomials . . . . . . . . . . . . . . 10.5 The Division Algorithm of Polynomials . . . . . . . 10.5.1 Factorisation by Roots . . . . . . . . . . . . 10.6 The Divisibility of Polynomials . . . . . . . . . . . 10.6.1 Highest Common Factors of Polynomials . . 10.7 Irreducible Polynomials . . . . . . . . . . . . . . . . 10.7.1 Consequences of Irreducible Divisibility . . . 10.7.2 Decomposition into Irreducible Polynomials 10.8 Definition of the Minimal Polynomial . . . . . . . . 10.8.1 Properties of the Minimal Polynomial . . . . 10.9 Characteristic Polynomials . . . . . . . . . . . . . . 10.9.1 The Cayley-Hamilton Theorem . . . . . . . 11 Jordan 11.1 Jordan Blocks . . . . . . . . . . . 11.1.1 Jordan Matrices . . . . . . 11.1.2 Jordan Normal Form . . . 11.2 Jordan Bases . . . . . . . . . . . 11.2.1 Existence of Jordan Bases 4

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

30 30 30 30 31 31 31 31 31 31 32 32 32 33 33 33 33

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

34 34 34 34 35 35 36 36 36 36 37 37 37 38 39 39

. . . . .

40 40 40 40 40 41

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

11.2.2 Relation to Eigenvalue Multiplicity . . . . . . . . . . . . . . . 44 11.2.3 Computing Jordan Bases . . . . . . . . . . . . . . . . . . . . . 44 12 Bilinear and Quadratic Forms 12.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Determining Bilinear Forms from Quadratic Forms 12.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.1 Orthogonal Spaces . . . . . . . . . . . . . . . . . . 12.3.2 The Kernel for Bilinear maps . . . . . . . . . . . . 12.3.3 Dimension and Orthogonal Spaces . . . . . . . . . . 12.4 Linear Maps from Bilinear Forms . . . . . . . . . . . . . . 12.4.1 Isomorphismic Bilinear Maps . . . . . . . . . . . . 12.5 Matrices from Bilinear Forms . . . . . . . . . . . . . . . . 12.5.1 Determining Bilinear Forms from Matrices . . . . . 12.5.2 Properties of Bilinear Matrices . . . . . . . . . . . . 12.5.3 Similarity of Matrices of Bilinear Forms . . . . . . . 12.5.4 Diagonal Matrices of Bilinear Forms . . . . . . . . 12.6 Inner Products . . . . . . . . . . . . . . . . . . . . . . . .

5

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

45 45 45 45 45 45 45 46 46 46 46 46 47 47 47 47

1

Groups, Rings, and Fields

1.1

Groups

A group is a set G combined with a group operation ◦ : G × G → G such that: • Associativity, for all g, h, j in G, g(hj ) = (gh)j, • Identity, there exists e in G such that eg = ge = g for all g in G • Inverses, for all g in G, there exists g −1 in G such that gg −1 = g −1 g = e where e is the identity of G. Note that here we have implicitly used the group operation ◦. 1.1.1

Subgroups

For a group G = (G, ◦), we have that G ′ = (G′ , ◦) is a subgroup of G if and only if G′ ⊆ G and G ′ is a group. 1.1.2

Group Homomorphisms

A homomorphism between two groups G, H is a function f : G → H such that f (gh) = f (g)f (h) for all g, h in G. 1.1.3

Properties of Group Homomorphisms

We can derive some properties of homomorphisms, for G, H groups, and f : G → H a homomorphism: • The image of the identity in G is the identity in H , • Ker(f ) is a subgroup of G, • Im(f ) is a subgroup of H .

6

1.2

Rings

A ring with unity is a set R along with an addition map +, and a multiplication map ◦ where +, ◦ : R × R → R such that: • (R, +) is an abelian group (of which the identity is called zero), • The multiplication operation is associative, • The multiplication operation has a two-sided identity not equal to the zero identity (called one), • For all a, b, c in R, a(b + c) = ab + ac and (a + b)c = ac + bc. A ring is commutative if the multiplication operation is commutative. 1.2.1

Subrings

For a ring R = (R, +, ◦), we have that R′ = (R′ , +, ◦), is a subring of R if and only if R′ ⊆ R and R′ is a ring. 1.2.2

Ring Homomorphisms

For rings with unity R and S, f : R → S is a ring homomorphism if for all a, b in R: f (a + b) = f (a) + f (b) f (ab) = f (a)f (b) f (1R ) = 1S .

7

1.3

Fields

A field K is a ring with unity where (K \ {0}, ◦) is an abelian group. 1.3.1

Characteristic of a Field

For a field K, the field characteristic char(K) is the smallest positive integer n such that: n·1=

n X

1 = 1 + 1 + . . . + 1 = 0,

i=1

or zero if no such value n exists. Field Characteristics being Prime The characteristic of a field K must be prime (or zero) because if for some a, b integers char(K) = ab then: 0 = char(K) · 1 = (a · 1)(b · 1), which means a · 1 or b · 1 is zero so a or b is the characteristic of K . 1.3.2

Algebraic Closure of Fields

A field K is called algebraically closed if all non-constant polynomials with coefficients in K also has a root in K .

8

2

Vector Spaces

A vector space over a field K is a set V with an addition operation + : V × V → V and a scalar multiplication operation ◦ : K × V → V such that for all a, b in K and v, w in V : • (V, +) is an abelian group, • 1K ◦ v = v, • (ab) ◦ v = a ◦ (b ◦ v) • (a + b) ◦ v = a ◦ v + b ◦ v • a ◦ (v + w) = a ◦ v + a ◦ w.

2.1

Subspaces

For V a vector space over the field K and W a set, W is a subspace of V if and only if it is a subset of V and is a vector space with respect to the addition and scalar multiplication defined by V . It is sufficient to verify that W is closed under addition and multiplication.

2.2

Linear Combinations of Vectors

For a set V with addition operation +, a field K and n in N, a linear combination of v1 , . . . , vn in V is: n X

ai · vi = a1 · v1 + · · · + an · vn ,

i=1

for some a1 , . . . , an in K. Such a combination is trivial if each of a1 , . . . , an are zero and non-trivial otherwise.

2.3

Linear Independence

For a vector space V and W ⊆ V , we say W is linearly independent if there does not exists a non-trivial linear combination of all the vectors in W equal to zero (and linearly dependent otherwise). 9

2.3.1

Properties of Linear Independence

For a vector space V with W ⊆ V : • W is linearly dependent if it contains 0V , • If W linearly independent, any subset of it is also linearly independent, • If there’s a linearly dependent subset of W , then W is linearly dependent.

2.4

The Span of a Set

For a set V with addition operation + and a field K, the span of W ⊆ V is the set of all the linear combinations of the values in W denoted by span(W ).

2.5

Bases

For a vector space V with W ⊆ V , if W is linearly independent and span(W ) = V , we say that W is a basis of V . It is a minimal spanning set. 2.5.1

Properties of Bases

We have that if a basis is finite, all other bases have the same size. Additionally, saying W is a basis is equivalent to saying that each vector in V can be uniquely written as a linear combination of vectors in W .

2.6

Dimension

For a vector space V with a finite basis, we say that the size of the basis is the dimension of V denoted by dim(V ). By convention, dim({0V }) = 0. Vector spaces with identical dimension are isomorphic. 2.6.1

Dimension and Subsets

For V 6= {0} a vector space, if there is a finite spanning set S of V then: • V is finite dimensional, particularly, there is a basis B of V where B ⊆ S , • For X ⊆ V such that X is linearly independent, X can be extended to a basis of V , • All subspaces of V are finite-dimensional.

10

3

Linear Maps

Let V, W be vector spaces over a field K, we have that f : V → W is a linear map if for all a, b in K and u, v in V : f (au + bv) = af (u) + bf (v). A bijective linear map is called an isomorphism. If f : V → W is an isomorphism, ∼W. we say that V and W are isomorphic, denoted by V =

3.1

Properties of Linear Maps

For a bijective linear map f : V → W , the inverse of f is also linear and if V = W , (f is a linear operator) then injectivity or surjectivity imply f is an isomorphism.

3.2

Nilpotence

For a field K, a finite dimensional vector space V over K, with f : V → V a linear map, we have that f is nilpotent if there exists r in Z≥0 such that f r is the zero map.

3.3

The Rank-Nullity Theorem

For V, W finite-dimensional vector spaces and f : V → W a linear map, we define the rank and nullity: rank(f ) := dim(Im(f )) nullity(f ) := dim(Ker(f )), and we have that: dim(V ) = rank(f ) + nullity(f ). Proof. We have that Ker(f ) is a subspace of V and by the finite-dimensionality of V we have that Ker(f ) is also finite-dimensional, so we take a basis BK = {v1 , . . . , vk } of Ker(f ) where k = dim(Ker(f )) = nullity(f ). We extend BK with the linearly independent set BI = {vk+1, . . . , vk+i } to a basis of V where i = dim(V ) − k. Thus, B = BK ∪ BI is a basis of V (partitioned by BK , BI ). So, Im(f ) = span(f (B)) as B is a basis but: f (B) = {f (v1 ), . . . , f (vk ), f (vk+1), . . . , f (vk+i )} = {0W , . . . , 0W , f(vk+1 ), . . . , f (vk+i )} = f (BI ), 11

as BK ⊆ Ker(f ). So, Im(f ) = span(f (BI )). We have that BI must be linearly independent as it’s part of our basis B so f (BI ) must also be linearly independent. Thus, f (BI ) is a basis for Im(f ), so rank(f ) = dim(Im(f )) = |f (BI )| = |BI | = i, thus: rank(f ) + nullity(f ) = i + k = |B| = dim(V ).

12

4

Matrices

Let m, n be in Z>0 and let K be a field. An m × n matrix with entries in K is a map M : [m] × [n] → K, more commonly written as M = (aij ) representing the rectangular array of values held by M .

4.1

Types of Matrices

For m, n in Z>0 and K a field, let M be in Mm×n (K ). We have the following types of matrix: • Square: where m = n • Upper Triangular: if aij = 0 for i > j • Lower Triangular: if aij = 0 for i < j • Diagonal: if aij = 0 for i 6= j • Symmetric: if aij = aj i • Anti-sym...


Similar Free PDFs