Coulson Richardson's Chemical Engineering Vol.6 Chemical Engineering Design 4th Edition PDF

Title Coulson Richardson's Chemical Engineering Vol.6 Chemical Engineering Design 4th Edition
Author Khoa Nguyễn
Pages 1,055
File Size 7.1 MB
File Type PDF
Total Downloads 598
Total Views 879

Summary

Coulson & Richardson’s CHEMICAL ENGINEERING VOLUME 6 Coulson & Richardson’s Chemical Engineering Chemical Engineering, Volume 1, Sixth edition Fluid Flow, Heat Transfer and Mass Transfer J. M. Coulson and J. F. Richardson with J. R. Backhurst and J. H. Harker Chemical Engineering, Volume 2,...


Description

Coulson & Richardson’s

CHEMICAL ENGINEERING VOLUME 6

Coulson & Richardson’s Chemical Engineering Chemical Engineering, Volume 1, Sixth edition Fluid Flow, Heat Transfer and Mass Transfer J. M. Coulson and J. F. Richardson with J. R. Backhurst and J. H. Harker Chemical Engineering, Volume 2, Fifth edition Particle Technology and Separation Processes J. F. Richardson and J. H. Harker with J. R. Backhurst Chemical Engineering, Volume 3, Third edition Chemical & Biochemical Reactors & Process Control Edited by J. F. Richardson and D. G. Peacock Chemical Engineering, Second edition Solutions to the Problems in Volume 1 J. R. Backhurst and J. H. Harker with J. F. Richardson Chemical Engineering, Solutions to the Problems in Volumes 2 and 3 J. R. Backhurst and J. H. Harker with J. F. Richardson Chemical Engineering, Volume 6, Fourth edition Chemical Engineering Design R. K. Sinnott

Coulson & Richardson’s CHEMICAL ENGINEERING VOLUME 6 FOURTH EDITION

Chemical Engineering Design R. K. SINNOTT

AMSTERDAM ž BOSTON ž HEIDELBERG ž LONDON ž NEW YORK ž OXFORD PARIS ž SAN DIEGO ž SAN FRANCISCO ž SINGAPORE ž SYDNEY ž TOKYO

Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, MA 01803 First published 1983 Second edition 1993 Reprinted with corrections 1994 Reprinted with revisions 1996 Third edition 1999 Reprinted 2001, 2003 Fourth edition 2005 Copyright  1993, 1996, 1999, 2005 R. K. Sinnott. All rights reserved The right of R. K. Sinnott to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (C44) (0)1865 843830; fax: (C44) (0)1865 853333; e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining Permissions’ British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN 0 7506 6538 6

For information on all Elsevier Butterworth-Heinemann publications visit our website at http://books.elsevier.com Typeset by Laserwords Private Limited, Chennai, India

Contents PREFACE TO FOURTH EDITION

xvii

PREFACE TO THIRD EDITION

xx

PREFACE TO SECOND EDITION

xxi

PREFACE TO FIRST EDITION

xxiii

SERIES EDITOR’S PREFACE

xxiv

ACKNOWLEDGEMENT

xxv

1

Introduction to Design 1.1 1.2

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.10

1.11 1.12 1.13

2

1

Introduction Nature of design 1.2.1 The design objective (the need) 1.2.2 Data collection 1.2.3 Generation of possible design solutions 1.2.4 Selection The anatomy of a chemical manufacturing process 1.3.1 Continuous and batch processes The organisation of a chemical engineering project Project documentation Codes and standards Factors of safety (design factors) Systems of units Degrees of freedom and design variables. The mathematical representation of the design problem 1.9.1 Information flow and design variables 1.9.2 Selection of design variables 1.9.3 Information flow and the structure of design problems Optimisation 1.10.1 General procedure 1.10.2 Simple models 1.10.3 Multiple variable problems 1.10.4 Linear programming 1.10.5 Dynamic programming 1.10.6 Optimisation of batch and semicontinuous processes References Nomenclature Problems

1 1 3 3 3 4 5 7 7 10 12 13 14 15 15 19 20 24 25 25 27 29 29 29 30 31 32

Fundamentals of Material Balances

34

2.1 2.2 2.3 2.4 2.5

34 34 34 35 36

Introduction The equivalence of mass and energy Conservation of mass Units used to express compositions Stoichiometry

v

vi

CONTENTS

2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21

3

Choice of system boundary Choice of basis for calculations Number of independent components Constraints on flows and compositions General algebraic method Tie components Excess reagent Conversion and yield Recycle processes Purge By-pass Unsteady-state calculations General procedure for material-balance problems References (Further Reading) Nomenclature Problems

37 40 40 41 42 44 46 47 50 52 53 54 56 57 57 57

Fundamentals of Energy Balances (and Energy Utilisation)

60

3.1 3.2 3.3

60 60 61 61 61 61 61 62 62 62 67 68 70 71 72 73 75 77 79 80 81 82 84 90 93 93 99 101 101 101 102 103 105 107 110 111 111 115 117 121 123

Introduction Conservation of energy Forms of energy (per unit mass of material) 3.3.1 Potential energy 3.3.2 Kinetic energy 3.3.3 Internal energy 3.3.4 Work 3.3.5 Heat 3.3.6 Electrical energy 3.4 The energy balance 3.5 Calculation of specific enthalpy 3.6 Mean heat capacities 3.7 The effect of pressure on heat capacity 3.8 Enthalpy of mixtures 3.8.1 Integral heats of solution 3.9 Enthalpy-concentration diagrams 3.10 Heats of reaction 3.10.1 Effect of pressure on heats of reaction 3.11 Standard heats of formation 3.12 Heats of combustion 3.13 Compression and expansion of gases 3.13.1 Mollier diagrams 3.13.2 Polytropic compression and expansion 3.13.3 Multistage compressors 3.13.4 Electrical drives 3.14 Energy balance calculations 3.15 Unsteady state energy balances 3.16 Energy recovery 3.16.1 Heat exchange 3.16.2 Heat-exchanger networks 3.16.3 Waste-heat boilers 3.16.4 High-temperature reactors 3.16.5 Low-grade fuels 3.16.6 High-pressure process streams 3.16.7 Heat pumps 3.17 Process integration and pinch technology 3.17.1 Pinch technology 3.17.2 The problem table method 3.17.3 The heat exchanger network 3.17.4 Minimum number of exchangers 3.17.5 Threshold problems

CONTENTS

3.18 3.19 3.20

4

Flow-sheeting 4.1 4.2

4.3 4.4 4.5 4.6

4.7 4.8 4.9

5

3.17.6 Multiple pinches and multiple utilities 3.17.7 Process integration: integration of other process operations References Nomenclature Problems

Introduction Flow-sheet presentation 4.2.1 Block diagrams 4.2.2 Pictorial representation 4.2.3 Presentation of stream flow-rates 4.2.4 Information to be included 4.2.5 Layout 4.2.6 Precision of data 4.2.7 Basis of the calculation 4.2.8 Batch processes 4.2.9 Services (utilities) 4.2.10 Equipment identification 4.2.11 Computer aided drafting Manual flow-sheet calculations 4.3.1 Basis for the flow-sheet calculations 4.3.2 Flow-sheet calculations on individual units Computer-aided flow-sheeting Full steady-state simulation programs 4.5.1 Information flow diagrams Manual calculations with recycle streams 4.6.1 The split-fraction concept 4.6.2 Illustration of the method 4.6.3 Guide rules for estimating split-fraction coefficients References Nomenclature Problems

Piping and Instrumentation 5.1 5.2 5.3 5.4

5.5

5.6 5.7

Introduction The P and I diagram 5.2.1 Symbols and layout 5.2.2 Basic symbols Valve selection Pumps 5.4.1 Pump selection 5.4.2 Pressure drop in pipelines 5.4.3 Power requirements for pumping liquids 5.4.4 Characteristic curves for centrifugal pumps 5.4.5 System curve (operating line) 5.4.6 Net positive suction head (NPSH) 5.4.7 Pump and other shaft seals Mechanical design of piping systems 5.5.1 Wall thickness: pipe schedule 5.5.2 Pipe supports 5.5.3 Pipe fittings 5.5.4 Pipe stressing 5.5.5 Layout and design Pipe size selection Control and instrumentation 5.7.1 Instruments 5.7.2 Instrumentation and control objectives 5.7.3 Automatic-control schemes

vii 124 124 127 128 130

133 133 133 134 134 134 135 139 139 140 140 140 140 140 141 142 143 168 168 171 172 172 176 185 187 188 188

194 194 194 195 195 197 199 199 201 206 208 210 212 213 216 216 217 217 217 218 218 227 227 227 228

viii

CONTENTS

5.8

Typical control systems 5.8.1 Level control 5.8.2 Pressure control 5.8.3 Flow control 5.8.4 Heat exchangers 5.8.5 Cascade control 5.8.6 Ratio control 5.8.7 Distillation column control 5.8.8 Reactor control 5.9 Alarms and safety trips, and interlocks 5.10 Computers and microprocessors in process control 5.11 References 5.12 Nomenclature 5.13 Problems

6

Costing and Project Evaluation 6.1 6.2 6.3 6.4 6.5

Introduction Accuracy and purpose of capital cost estimates Fixed and working capital Cost escalation (inflation) Rapid capital cost estimating methods 6.5.1 Historical costs 6.5.2 Step counting methods 6.6 The factorial method of cost estimation 6.6.1 Lang factors 6.6.2 Detailed factorial estimates 6.7 Estimation of purchased equipment costs 6.8 Summary of the factorial method 6.9 Operating costs 6.9.1 Estimation of operating costs 6.10 Economic evaluation of projects 6.10.1 Cash flow and cash-flow diagrams 6.10.2 Tax and depreciation 6.10.3 Discounted cash flow (time value of money) 6.10.4 Rate of return calculations 6.10.5 Discounted cash-flow rate of return (DCFRR) 6.10.6 Pay-back time 6.10.7 Allowing for inflation 6.10.8 Sensitivity analysis 6.10.9 Summary 6.11 Computer methods for costing and project evaluation 6.12 References 6.13 Nomenclature 6.14 Problems

7

Materials of Construction 7.1 7.2 7.3

7.4

Introduction Material properties Mechanical properties 7.3.1 Tensile strength 7.3.2 Stiffness 7.3.3 Toughness 7.3.4 Hardness 7.3.5 Fatigue 7.3.6 Creep 7.3.7 Effect of temperature on the mechanical properties Corrosion resistance 7.4.1 Uniform corrosion 7.4.2 Galvanic corrosion

229 229 229 229 230 231 231 231 233 235 236 238 239 240

243 243 243 244 245 247 247 249 250 251 251 253 260 260 261 270 270 272 272 273 273 274 274 274 275 278 279 279 280

284 284 284 285 285 285 286 286 286 287 287 287 288 289

CONTENTS

7.5 7.6 7.7 7.8

7.9

7.10

7.11 7.12 7.13 7.14 7.15 7.16

8

7.4.3 Pitting 7.4.4 Intergranular corrosion 7.4.5 Effect of stress 7.4.6 Erosion-corrosion 7.4.7 High-temperature oxidation 7.4.8 Hydrogen embrittlement Selection for corrosion resistance Material costs Contamination 7.7.1 Surface finish Commonly used materials of construction 7.8.1 Iron and steel 7.8.2 Stainless steel 7.8.3 Nickel 7.8.4 Monel 7.8.5 Inconel 7.8.6 The Hastelloys 7.8.7 Copper and copper alloys 7.8.8 Aluminium and its alloys 7.8.9 Lead 7.8.10 Titanium 7.8.11 Tantalum 7.8.12 Zirconium 7.8.13 Silver 7.8.14 Gold 7.8.15 Platinum Plastics as materials of construction for chemical plant 7.9.1 Poly-vinyl chloride (PVC) 7.9.2 Polyolefines 7.9.3 Polytetrafluroethylene (PTFE) 7.9.4 Polyvinylidene fluoride (PVDF) 7.9.5 Glass-fibre reinforced plastics (GRP) 7.9.6 Rubber Ceramic materials (silicate materials) 7.10.1 Glass 7.10.2 Stoneware 7.10.3 Acid-resistant bricks and tiles 7.10.4 Refractory materials (refractories) Carbon Protective coatings Design for corrosion resistance References Nomenclature Problems

Design Information and Data 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8

Introduction Sources of information on manufacturing processes General sources of physical properties Accuracy required of engineering data Prediction of physical properties Density 8.6.1 Liquids 8.6.2 Gas and vapour density (specific volume) Viscosity 8.7.1 Liquids 8.7.2 Gases Thermal conductivity 8.8.1 Solids 8.8.2 Liquids

ix 290 290 290 291 291 292 292 293 294 295 295 295 296 298 299 299 299 299 299 300 300 300 300 301 301 301 301 302 302 302 302 302 303 303 304 304 304 304 305 305 305 305 307 307

309 309 309 311 312 313 314 314 315 316 316 320 320 320 321

x

CONTENTS

8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16

8.17 8.18 8.19

9

8.8.3 Gases 8.8.4 Mixtures Specific heat capacity 8.9.1 Solids and liquids 8.9.2 Gases Enthalpy of vaporisation (latent heat) 8.10.1 Mixtures Vapour pressure Diffusion coefficients (diffusivities) 8.12.1 Gases 8.12.2 Liquids Surface tension 8.13.1 Mixtures Critical constants Enthalpy of reaction and enthalpy of formation Phase equilibrium data 8.16.1 Experimental data 8.16.2 Phase equilibria 8.16.3 Equations of state 8.16.4 Correlations for liquid phase activity coefficients 8.16.5 Prediction of vapour-liquid equilibria 8.16.6 K -values for hydrocarbons 8.16.7 Sour-water systems (Sour) 8.16.8 Vapour-liquid equilibria at high pressures 8.16.9 Liquid-liquid equilibria 8.16.10 Choice of phase equilibria for design calculations 8.16.11 Gas solubilities 8.16.12 Use of equations of state to estimate specific enthalpy and density References Nomenclature Problems

Safety and Loss Prevention 9.1 9.2 9.3

9.4

9.5

9.6 9.7 9.8 9.9

Introduction Intrinsic and extrinsic safety The hazards 9.3.1 Toxicity 9.3.2 Flammability 9.3.3 Explosions 9.3.4 Sources of ignition 9.3.5 Ionising radiation 9.3.6 Pressure 9.3.7 Temperature deviations 9.3.8 Noise Dow fire and explosion index 9.4.1 Calculation of the Dow F & EI 9.4.2 Potential loss 9.4.3 Basic preventative and protective measures 9.4.4 Mond fire, explosion, and toxicity index 9.4.5 Summary Hazard and operability studies 9.5.1 Basic principles 9.5.2 Explanation of guide words 9.5.3 Procedure Hazard analysis Acceptable risk and safety priorities Safety check lists Major hazards 9.9.1 Computer software for quantitative risk analysis

321 322 322 322 325 328 329 330 331 331 333 335 335 336 339 339 339 339 341 342 346 348 348 348 348 350 351 353 353 357 358

360 360 361 361 361 363 365 366 368 368 369 370 371 371 375 377 378 379 381 382 383 384 389 390 392 394 395

CONTENTS

9.10 9.11

10

References Problems

Equipment Selection, Specification and Design 10.1 10.2 10.3

10.4

10.5 10.6

10.7 10.8

10.9

10.10 10.11

10.12

10.13 10.14 10.15 10.16

Introduction Separation processes Solid-solid separations 10.3.1 Screening (sieving) 10.3.2 Liquid-solid cyclones 10.3.3 Hydroseparators and sizers (classifiers) 10.3.4 Hydraulic jigs 10.3.5 Tables 10.3.6 Classifying centrifuges 10.3.7 Dense-medium separators (sink and float processes) 10.3.8 Flotation separators (froth-flotation) 10.3.9 Magnetic separators 10.3.10 Electrostatic separators Liquid-solid (solid-liquid) separators 10.4.1 Thickeners and clarifiers 10.4.2 Filtration 10.4.3 Centrifuges 10.4.4 Hydrocyclones (liquid-cyclones) 10.4.5 Pressing (expression) 10.4.6 Solids drying Separation of dissolved solids 10.5.1 Evaporators 10.5.2 Crystallisation Liquid-liquid separation 10.6.1 Decanters (settlers) 10.6.2 Plate separators 10.6.3 Coalescers 10.6.4 Centrifugal separators Separation of dissolved liquids 10.7.1 Solvent extraction and leaching Gas-solids separations (gas cleaning) 10.8.1 Gravity settlers (settling chambers) 10.8.2 Impingement separators 10.8.3 Centrifugal separators (cyclones) 10.8.4 Filters 10.8.5 Wet scrubbers (washing) 10.8.6 Electrostatic precipitators Gas liquid separators 10.9.1 Settling velocity 10.9.2 Vertical separators 10.9.3 Horizontal separators Crushing and grinding (comminution) equipment Mixing equipment 10.11.1 Gas mixing 10.11.2 Liquid mixing 10.11.3 Solids and pastes Transport and storage of materials 10.12.1 Gases 10.12.2 Liquids 10.12.3 Solids Reactors 10.13.1 Principal types of reactor 10.13.2 Design procedure References Nomenclature Problems

xi 396 398

400 400 401 401 401 404 405 405 405 406 406 407 407 408 408 408 409 415 422 426 426 434 434 437 440 440 445 445 446 446 447 448 448 448 450 458 459 459 460 461 461 463 465 468 468 468 476 476 477 479 481 482 483 486 486 490 491

xii

11

CONTENTS

Separation Columns (Distillation, Absorption and Extraction) 11.1 11.2

11.3

11.4 11.5

11.6 11.7

11.8

11.9

11.10

11.11 11.12 11.13

11.14

Introduction Continuous distillation: process description 11.2.1 Reflux considerations 11.2.2 Feed-point location 11.2.3 Selection of column pressure Continuous distillation: basic principles 11.3.1 Stage equations 11.3.2 Dew points and bubble points 11.3.3 Equilibrium flash calculations Design variables in distillation Design methods for binary systems 11.5.1 Basic equations 11.5.2 McCabe-Thiele method 11.5.3 Low product concentrations 11.5.4 The Smoker equations Multicomponent distillation: general considerations 11.6.1 Key components 11.6.2 Number and sequencing of columns Multicomponent distillation: short-cut methods for stage and reflux requirements 11.7.1 Pseudo-binary systems 11.7.2 Smith-Brinkley method 11.7.3 Empirical correlations 11.7.4 Distribution of non-key components (graphical method) Multicomponent systems: rigorous solution procedures (computer methods) 11.8.1 Lewis-Matheson method 11.8.2 Thiele-Geddes method 11.8.3 Relaxation methods 11.8.4 Linear algebra methods Other distillation systems 11.9.1 Batch distillation 11.9.2 Steam distillation 11.9.3 Reactive distillation Plate efficiency 11.10.1 Prediction of plate efficiency 11.10.2 O’Connell’s correlation 11.10.3 Van Winkle’s correlation 11.10.4 AIChE method 11.10.5 Entrainment Approximate column sizing Plate contactors 11.12.1 Selection of plate type 11.12.2 Plate construction Plate hydraulic design 11.13.1 Plate-design procedure 11.13.2 Plate areas 11.13.3 Diameter 11.13.4 Liquid-flow arrangement 11.13.5 Entrainment 11.13.6 Weep point 11.13.7 Weir liquid crest 11.13.8 Weir dimensions 11.13.9 Perforated area 11.13.10 Hole size 11.13.11 Hole pitch 11.13.12 Hydraulic gradient 11.13.13 Liquid throw 11.13.14 Plate pressure drop 11.13.15 Downcomer design [back-up] Packed columns 11.14.1 Types of packing

493 493 494 495 496 496 497 497 498 499 501 503 503 505 507 512 515 516 517 517 518 522 523 526 542 543 544 545 545 546 546 546 547 547 548 550 552 553 556 557 557 560 561 565 567 567 567 569 570 571 572 572 572 573 574 574 575 575 577 587 589

CONTENTS

11.15 11.16

11.17 11.18 11.19

12

11.14.2 Packed-bed height 11.14.3 Prediction of the height of a transfer unit (HTU) 11.14.4 Column diameter (capacity) 11.14.5 Column internals 11.14.6 Wetting rates Column auxiliaries Solvent extraction (liquid liquid extraction) 11.16.1 Extraction equipment 11.16.2 Extractor design 11.16.3 Extraction columns 11.16.4 Supercritical fluid extraction References Nomenclature Problems

Heat-transfer Equipment 12.1 12.2

Introduction Basic design procedure and theory 12.2.1 Heat exchanger analysis: the effectiveness NTU method 12.3 Overall heat-transfer coefficient 12.4 Fouling factors (dirt factors) 12.5 Shell and tube exchangers: construction details 12.5.1 Heat-exchanger standards and codes 12.5.2 Tubes 12.5.3 Shells 12.5.4 Tube-sheet layout (tube count) 12.5.5 Shell types (passes) 12.5.6 Shell and tube designation 12.5.7 Baffles 12.5.8 Support p...


Similar Free PDFs