Evidencia 2 - Como seleccionar relevadores y contactores en circuitos de control de motores eléctricos de acuerdo a su aplicación PDF

Title Evidencia 2 - Como seleccionar relevadores y contactores en circuitos de control de motores eléctricos de acuerdo a su aplicación
Course control de motores electricos
Institution Bachillerato (México)
Pages 3
File Size 84.5 KB
File Type PDF
Total Downloads 76
Total Views 120

Summary

en dicho reporte se encuentra Como seleccionar relevadores y contactores en circuitos de control de motores eléctricos de acuerdo a su aplicación y diferentes temas relacionados a este ...


Description

Como seleccionar relevadores y contactores en circuitos de control de motores eléctricos de acuerdo a su aplicación Son muchas y variadas las aplicaciones que requieren contactores. La elección del contactor con el calibre más apropiado depende directamente de las características de cada aplicación. Los fabricantes incluyen en sus catálogos tablas que permiten determinar el calibre de los contactores en función del tipo general de aplicación (distribución o control de motores) y de las tensiones y corrientes utilizadas. Dichas tablas se establecen para: – cadencias de funcionamiento < a 30 ciclos de maniobras por hora (los motores estándar admiten 6 arranques por hora), – una temperatura ambiente de 40 °C, – una tensión ≤ 440 V. En estas condiciones, un contactor puede conmutar una corriente igual a su propia corriente asignada de empleo según las categorías de empleo AC-1 o AC-3. En los demás casos puede ser necesaria una desclasificación, es decir, utilizar un contactor de calibre superior que se determina consultando las tablas o curvas correspondientes. Elegir un contactor para una aplicación concreta significa fijar la capacidad de un aparato para establecer, soportar e interrumpir la corriente en el receptor que se desea controlar, en unas condiciones de utilización establecidas, sin recalentamientos ni desgaste excesivo de los contactos. Para elegir correctamente el contactor hay que tener en cuenta: – el tipo y las características del circuito o del receptor que se desea controlar: intensidad y tipo de corriente, tensión, regímenes transitorios en la puesta bajo tensión, etc., – las condiciones de explotación: ciclos de maniobras/hora, factor de marcha, corte en vacío o en carga, categoría de empleo, tipo de coordinación, durabilidad eléctrica deseada, etc., – las condiciones del entorno: temperatura ambiente, altitud cuando sea necesario, etc. La importancia de cada uno de estos criterios es distinta en cada aplicación. Por ejemplo: ♦ Control de un circuito resistivo Este tipo de aplicación (por ejemplo, resistencias de calentamiento) pertenece a la categoría de empleo AC-1, con un número de ciclos de maniobras reducido. El calentamiento del contactor depende principalmente de la corriente nominal del receptor y del tiempo de paso de esta corriente. ♦ Control de un motor asíncrono de jaula La categoría de empleo de esta aplicación puede ser AC-3 (cortes con motor lanzado) o AC-4 (cortes con motor calado). El calentamiento se debe tanto al paso de la corriente nominal del motor como al pico de corriente en el arranque y a la energía de arco en el corte. Por lo tanto, con un calibre de contactor y una categoría de empleo determinados, el calentamiento será mayor cuanto mayor sea la frecuencia de ciclos de maniobras. Así pues, los criterios básicos para elegir el contactor son las categorías de empleo y la frecuencia de ciclos de maniobras. ♦ Control de receptores con un pico de corriente transitorio elevado en la puesta bajo tensión Este es el caso de, por ejemplo, los primarios de un transformador o de las baterías de condensadores. La corriente de cresta en la

puesta bajo tensión de estos aparatos puede llegar a ser más de diez veces superior a la corriente nominal. El poder de cierre asignado del contactor debe ser lo bastante alto como para que la fuerza de repulsión de la corriente transitoria no provoque la apertura no controlada ni la soldadura de los contactos. Este es pues el criterio básico para la elección de un contactor en este tipo de aplicación.

El principio contactores

de

funcionamiento

de los

relevadores

y

Contactor eléctrico Un contactor es un elemento conductor que tiene por objetivo establecer o interrumpir la corriente eléctrica de un receptor o instalación, con la posibilidad de ser accionado a distancia, que tiene dos posiciones de funcionamiento: una estable o de reposo, cuando no recibe acción alguna por parte del circuito de mando, y otra inestable, cuando actúa dicha acción. Este tipo de funcionamiento se llama de "todo o nada". En los esquemas eléctricos, su simbología se establece con las letras KM seguidas de un número de orden. Principio de funcionamiento de un contactor El funcionamiento de un contactor consiste en que los contactos principales se conectan al circuito que se quiere gobernar. Asegurando el establecimiento y cortes de las corrientes principales y según el número de vías de paso de corriente podrá ser bipolar, tripolar, tetrapolar, etc. realizándose las maniobras simultáneamente en todas las vías. Los contactos auxiliares son de dos clases abiertos, NA, y cerrados, NC. Estos forman parte del circuito auxiliar del contactor y aseguran las autoalimentaciones, los mandos, enclavamientos de contactos y señalizaciones en los equipos de automatismo. Cuando la bobina del contactor queda excitada por la circulación de la corriente, esta mueve el núcleo en su interior y arrastra los contactos principales y auxiliares, estableciendo a través de los polos, el circuito entre la red y el receptor. Este arrastre o desplazamiento puede ser: 1-Por rotación, pivote sobre su eje. 2-Por traslación, deslizándose paralelamente a las partes fijas. 3-Combinación de movimientos, rotación y traslación. Cuando la bobina deja de ser alimentada, abre los contactos por efecto del resorte de presión de los polos y del resorte de retorno de la armadura móvil. Si se debe gobernar desde diferentes puntos, los pulsadores de marcha se conectan en paralelo y el de parada en serie.

Relé El relé es un dispositivo electromecánico, que funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Principio de funcionamiento de un relé El relé se activa o desactiva cuando el electroimán que forma parte del relé es energizado (le ponemos un voltaje para que funcione). Esta operación causa que exista conexión o no entre dos o más terminales del dispositivo. Se logra con la atracción o repulsión de un pequeño brazo, llamado armadura, por el electroimán. Este pequeño brazo conecta o desconecta las terminales. Es importante saber cuál es la resistencia del bobinado del electroimán y con cuanto voltaje este se activa. Este voltaje y esta resistencia nos informan que magnitud debe de tener la señal que activará el relé y cuanta corriente se debe suministrar a éste. Este funcionamiento conlleva dos ventajas: 1) Permite el control de un dispositivo a distancia. No se necesita estar junto al dispositivo para hacerlo funcionar. 2) Con una sola señal de control, se puede controlar varios Relés a la vez.

La clasificación de relevadores y contactores.

Las aplicaciones de los relevadores: - Interruptor de potencia (contactor) - Protección de motores. - Monitoreo

Las especificaciones contactores.

técnicas

de

los

relevadores

Los criterios de selección de relevadores y contactores.

y...


Similar Free PDFs