Exam 2012, Discrete Mathematics, questions and answers PDF

Title Exam 2012, Discrete Mathematics, questions and answers
Course Discrete Mathematics
Institution University of Queensland
Pages 9
File Size 300.6 KB
File Type PDF
Total Downloads 71
Total Views 184

Summary

Download Exam 2012, Discrete Mathematics, questions and answers PDF


Description

UQAttic.net[Chat] 

MATH10612012Semester1Exam



MATH1061:2012Semester1Exam UQAttic Getmoreoutofyourstudytime.JoinUQAttic'sSemester1,2013revisionchat.

Otherexampapers 

Readthispagefirst! Pleasecontributetothesedocuments. Ifyou'relookingforaneffectivewaytofamiliariseyourselfwiththecoursematerial,youcan'tgo pastcollaboratingwithfellowstudents.Wehavelabouredtoputtheseup,andsoattheveryleast pointoutwhereyouthinkwearewrong! You'llgetmoreoutofthecourse,you'lldobetterintheexam,andotherstudentswillbenefitfrom yourinputaswell. Togeteditingpermissions,simplygotothechatroomandprovideuswithyourGoogleAccount address.

Style. Typeanswersinbluebeneatheachquestion. Ifyou'reunsureofyouranswer,highlightyouranswertextthenhitCtrl+Alt+Mtocreateacomment besidethetext.Onceyou'resatisfiedwiththeanswer,clickthe"Resolve"buttononthecomment. Ifyouwantsomeextraexplanationfromsomeoneelseontheiranswer,highlighttheotherperson's answerandrepeattheprocedureabove.

Communicate. Headovertouqattic.netandclick"ChatNow!".You'llfindachatroomfullofstudentsjustlikeyou. Talkaboutarevisiondocument(likethisone)orswappreptips. IfyouhaveyourownIRCclient,pointittoirc.uqattic.net,port6667,channel#attic.

UQAttic.net[Chat] 

MATH10612012Semester1Exam



  Q1:(a)Constructatruthtableforthefollowingstatementform: p ⋁ (q ⋀ ( ~ p)) ↔ ((~ q) → p)    p

q

p ⋁ (q ⋀ (~ p)) 

((~ q) → p) 

p ⋁ (q ⋀ ( ~ p)) ↔ ((~ q) → p) 

T

T

T

T

T

T

F

T

T

T

F

T

T

T

T

F

F

F

F

T

 Thisstatementformisatautology.  (b)Writedownthenegationofthefollowingstatement: ∀x ∈ ℝ, ∃y ∈ ℤ suchthat (x + y) ≥ 0 .Is theoriginalstatementtrueorfalse?Explainyouranswerbriefly.  ∃x ∈ ℝ suchthat ∀y ∈ ℤ, (x + y) < 0 . Theoriginalstatementistrue;forallrealnumbers x,anyinteger y > |x| satisfies x + y ≥ 0 .  Q2:Sets P , Q , R, Saregivenby P = { a, b}, Q = {a, ∅}, R = { ∅}, S = {P , ∅} .Completethe following.  P ⋃ Q = {a, b, ∅}  Q ⋂ R = {∅}  P ⋂S = ∅ P − Q = {b} 

P (Q) = {∅, {a}, {∅}, {a, ∅}}  P (R) = {∅, {∅}}  P × S = {(a, P ), (a, ∅), (b, P ), (b, ∅)}  |P × R | = 2   Q3:(a)Writethefollowingstatementsintheform“If...then...” (i)ItisnecessaryforAlicetocounttoteninorderforhertoremaincalm. IfAliceremainscalm,thenshecountedtoten.  (ii)ItissufficientforBobtotakeanumbrellainordertokeeptherainaway. IfBobtakesanumbrella,thentherainiskeptaway. 

MATH10612012Semester1Exam

UQAttic.net[Chat] 



(Thetensei.e.whetheryouusedpasttense,presenttense,futuretensedoesn’treallymatter) (b)If risrationaland sisirrational,provethat 2r + s isirrational.  Weprovetheresultbycontradiction.Suppose risrational, sisirrational,and 2r + s isrational.  Then, r = aband 2r + s = dc forsome a, b, c, d ∈ ℤ with b, d =/ 0. Then, / 0, itfollowsthat s isrational,a s = (2r + s) − 2r = dc − 2ab = cb−2ad bd .Since cb − 2ad, bd ∈ ℤ ,and bd = contradiction.Thereforetheoriginalclaimistrue.∎  Q4: (a)If adivides b(thatis,if a|b),where a, bareintegers,then b = a × k forsomeinteger k.  (b)If a, b, careintegerssuchthat a|b, b|c ,provethat a|(b + 2c) .  Supposethat a, b, careintegerssuchthat a|b, b|c .Then, b = ak, c = bm forsomeintegers  k, m.Then, b + 2c = b + 2bm = ak + 2akm = (k + 2km)a.Since k + 2km ∈ ℤ,itfollowsthat  a|(b + 2c) .∎  (c)Provethatif nisanyoddinteger,then n2 − 5isdivisibleby4butneverby8.   Supposethat nisanoddinteger.Then, n = 2k + 1 forsomeinteger k .Then,  n2 − 5 = (2k + 1)2 − 5 = 4k2 + 4k − 4 = 4(k2 + k − 1).Since k2 + k − 1isaninteger, n2 − 5 isdivisible by4.  Moreover,if kiseventhen k2isevenandso k2 + k − 1isodd;if kisoddthen k2isoddandso  k2 + k − 1isodd.Ineachcase, k2 + k − 1 = 2m + 1 forsomeinteger m .Then, 4(k2 + k − 1) = 8m + 4,whichisnotdivisibleby8(sincethereisaremainderof4afterdivision).∎  Q5:(a)Proveorgiveacounterexample:“If gcd(a, b) = d and gcd(b, c) = 1 ,then gcd(a, c) = 1 ”   Acounterexampleis a = 6 , b = 3, c = 2, d = 3 : gcd(6, 3) = 3 and gcd(3, 2) = 1 ,but gcd(6, 2) = 2 .   (b)Leta,b,cbepositiveintegersandletpbeaprime.Statewhetherthefollowingaretrueor false. (i)If a|band b|cthen a|c 2.True.(ifb=ka,c=mb,then c2 = m2k2a ∙ a )  (ii)If p|ab,then pdoesn’tdivide aorelsepdoesn’tdivideb.False.(Counterex.:p=a=b=2)  (iii)If p|athengcd(a,p)=a.False.(Counterexample:p=2,a=4,thengcd(a,p)=2) (iv)Ifa|b,b|candc|a,thena;b;careequaltosomeprime.False.(Counterex.:a=b=c=4)  (c)Calculatethefollowing,giveanswersbetween0and5: (i)31div6=5 (ii)31mod6≡1 (iii)31!mod6≡0

MATH10612012Semester1Exam

UQAttic.net[Chat] 



(iv) 100131mod6≡5(since1001≡1,and ( − 1)31 =− 1≡5 ) Q6:(a)Foreachofthefollowinglistsofnumbers,eitherexplainwhynosimplegraphwithseven verticesandthegivennumbersasdegreescanexist,orelsedrawasimplegraphwithseven verticeshavingthegivendegrees.  (i)6,5,4,3,2,2,1. Nosuchgraphexists,sincethetotaldegreeisodd.  (ii)6,4,2,2,2,1,1.

   (b)(i)Atreewith9verticeshas8edges. (ii)Aparticulartreewith9verticeshaspreciselyfiveverticesofdegree1,andpreciselytwo verticesofdegree2.Theremainingtwoverticeshavedegreesaandb.Findaandb,giventhat a ≤ b .  Thetotaldegreeofthetreeis16=1+1+1+1+1+2+2+a+b.So,a+b=7.Sincea,bcan’tbe1or2, theonlysolutionisa=3,b=4.  Q7:UsethegraphGshownhereforthisquestion(seetheexampaper). (a)WritedownanEulercircuitoranEulerpathinG,ifeitherispossible;otherwiseexplainwhy anEulercircuitoranEulerpathisnotpossible.  Ghastwoverticesofodddegree,namelyf,g.So,ithasanEulerpath.Onesuchpathis f,b,a,c,d,b,e,a,g,c,h,e,f,h,d,g.  (b)DoesGcontainaHamiltoncycle?Ifso,writeonedown.  Yes.OneHamiltoncycleisa,b,e,f,h,d,g,c.  Q8:(a)Findthecoefficientof x9y5intheexpansionof (2x − y)14.Writeyouranswerasapositive  ornegativeproductofprimepowers.  5 9 Therequiredcoefficientis (14 9 )∙ 2 ∙ ( − 1 ) =  − 1 025024.Asaproductofprimes, 14∙13∙12∙11∙10 5∙4∙3∙2∙1

∙ (− 1) ∙ 29 = 14 ∙ 13 ∙ 11 ∙ (− 1) ∙ 29 = (− 1) ∙ 210 ∙ 7 ∙ 11 ∙ 13 .

MATH10612012Semester1Exam

UQAttic.net[Chat] 



  n (b)Provethat (r−1 )+ (nr) = (n+1 ,wherenandrarepositiveintegers. r )  −r+1) n n! n!∙r n! Ifn,rarepositiveintegers,then (r−1 )= (n−r+1)!∙( ,and(nr ) = (n−r)!∙r! .So, = (nn−!(rn+1)!∙ r! r−1)! = (n−r+1)!∙r! n!(n−r+1) n!(n+1) (n+1)! n (r−1 ) + (nr) =n!∙r+ .∎ = (n−r+1)!∙r! =(n+1−r)!∙r! = ( n+1 r ) (n−r+1)!∙r!

 Q9:Acommitteeoffiveistobechosenfromacollectionof4womenand8men.(a)Howmany differentcommitteesoffivepeoplecanbeformed?  (125 ) = 7 92 .  (b)Howmanydifferentcommitteesoffivecanbeformed,ifatleasttwomenandatleasttwo womenaretobeonthecommitteeoffive?  Eitherthereare3menand2women,ofwhichthereare (83 )× (42) = 3 36 options,or2menand3 women,ofwhichthereare 82( )× ( 43) = 1 12options,foratotalof336 + 112 = 448 options.  (c)Whatistheprobabilitythatthereareexactly3womenand2menchosen,giventhatthe constraintsinpart(b)hold?  112 = 1 .  448 4  Q10:(a)Usemathematicalinductiontoprovethat 4n + 7 < 5n forallintegers n ≥ 2 .   LetP(n)bethestatement 4n + 7 < 5n,weaimtoshow P (n)istrueforall n ≥ 2 .Inthecasethat  n = 2,itholdsthat 42 + 7 = 23 < 25 = 52 ,so P (2) istrue.   If P (n)istrueforsome n ≥ 2 ,then 4n + 7 < 5n ,so  4n+1 + 7 = 4 ∙ 4n + 7 < 4(4n + 7) < 4 ∙ 5n < 5 ∙ 5n = 5n+1 ,so P (n + 1) istrue.   Bytheprincipleofmathematicalinduction, P (n) holdsforall n ≥ 2 .∎   (b)Explainwhetherthefollowingsetsatisesthewellorderingprinciplefortheintegers:Theset ofallnonnegativeintegersoftheform 43 − 6k ,where k ∈ Z .   Yes,thissatisfiesthewellorderingprincipleasithasaleastelement,being1sinceitisalsothe smallestnonnegativeinteger(wherethelargestpossibleelementbeingk=7).  Q11:Functionsfandg,bothfromZtoZ,aredefinedby: f (x) = |2 − x| and g(x) = ceiling(2x ) .

MATH10612012Semester1Exam

UQAttic.net[Chat] 



(a)Whatistherangeoff? Forany y ∈ ℤ,if y ≥ 0then y = f (y + 2),andif y < 0,wecannothave |2 − x| = y forany x ,since |2 − x| ≥ 0 .So,therangeof f is {y ∈ ℤ|y ≥ 0} .  (b)Whatistherangeofg? Forany y ∈ ℤ,itholdsthat g(2y) = y,sotherangeof g is ℤ .  (c)Isf11?Verifyyouranswer. No,since f (1) = 1 = f (3) ,but 1 =/ 3 .  (d)IsgontoZ?Verifyyouranswer. Yes,sincetherangeis ℤ ,bypart(b).  (e)Find (g ° f )(3) .  First, f (3) = |2 − 3| = 1 .Then, (g ° f)(3) = g(f(3)) = g(1) = ceiling(12) = 1 . (f)Find (f ° g)(3) .  First, g(3) = ceiling(32) = 2 .Then, (f ° g)(3) = f(g(3)) = f (2) = |2 − 2| = 0 . (g)Is (g ° f ) ontoZ?Verifyyouranswer. ≥ 0 ,so ceiling(|2−x| No. |2 − x| ≥ 0,so |2−x| 2 ) ≥ 0 .Thus,− 1 ∈ ℤ isnotintherangeofg ° f . 2   Q12:Binaryrelationsρandτaredefinedonthesetofintegers,Z,asfollows: mρnifandonlyifmisamultipleofn; mτnifandonlyif m2 − n2 isdivisibleby3.   (a)Indicatewhichpropertiesthesebinaryrelationshave.  

ρ

τ

Reflexive

✓

✓

Symmetric

✗

✓

Antisymmetric

✗E ✗

Transitive

✓E ✓

PartialOrder

✗

✗

 (b)Explainyouranswersforthetwoboxesmarked(E)  Antisymmetryofρ:Consider m = 1 , n =− 1.Then, misamultipleof n and n isamultipleof m ,  but m =/ n .  Transitivityofρ:Ifm,n,kareintegerssuchthatmρnandnρk,then m = xn and n = yk for  someintegers x, y.Then, m = (xy)k,so misamultipleof k,thatis,mρk.   (c)ONEofρ,τisanequivalencerelation.Forthatbinaryrelation,giveitsequivalenceclasses.

MATH10612012Semester1Exam

UQAttic.net[Chat] 



Theequivalencerelationisτ.Theequivalenceclassesare [ 0] = { ∙ ∙ ∙ − 6 ,− 3 , 0 , 3, 6, ∙ ∙ ∙} = { 3x|x ∈ ℤ} and [ 1] = { ∙∙ ∙ − 5 ,− 4 ,− 2 ,− 1 , 1, 2, 4, 5, ∙ ∙ ∙} = {3x + 1, 3x + 2|x ∈ ℤ} .  Q13:Let X = { x, y}.DefineabinaryrelationσonP(X)(thepowersetofX),byAσBifandonlyif A ⊆ B . (a)Writedown X × X .

 X × X = { (x,x ),( x,y ), ( y, x ), ( y, y )} .

(b) |P (X)| = 4 (c)HowmanydifferentbinaryrelationscanbedefinedonthesetX? AbinaryrelationonXisasubsetof X × X .Thenumberofrelationsisthen |P (X × X )| = 24 = 16 . (d)Isσreflexive? (e)Isσantisymmetric?

Yes,itisclearthat A ⊆ A forany A ⊆ X . Yes,sinceif A ⊆ B ⊆ A,then A = B(bydefinitionofsetequality).

(f)Isσtransitive? Yes,sinceif A ⊆ B ⊆ C ,thenitisclearthat A ⊆ C . (g)Isσapartialorderrelation? Yes,sinceitisreflexive,antisymmetricandtransitive. (h)Isσatotalorderrelation? No,sinceneither {x} ⊆ {y} nor {y} ⊆ {x} hold.  Q14:Binaryoperations●and⭑aredenedonthesetofintegersℤby a ∙ b = a + b − 3 , a ★ b = a + 2b + ab .   (a)Is●associative? Yes,forany a, b, c ∈ ℤ , (a ∙ b) ∙ c = (a + b − 3) + c − 3 = a + b + c − 6 and a ∙ (b ∙ c) = a + (b + c − 3 ) − 3 = a + b + c − 6 = ( a ∙ b ) ∙ c .  (b)Is⭑associative? No,consider a = 1, b = 1, c = 2 .Then, a ★ (b ★ c) = 1 ★ (1 + 4 + 2) = 1 ★ 7 = 1 + 14 + 7 = 22 ,and  (a ★ b) ★ c = (1 + 2 + 1) ★ 2 = 4 ★ 2 = 4 + 4 + 8 = 16 =/ a ★ (b ★ c), sothisisacounterexample.   (c)Isthereanidentityelementfor●? Yes,3,since 3 ∙ a = 3 + a − 3 = a and a ∙ 3 = a + 3 − 3 = a .   (d)Isthereanidentityelementfor⭑? No.Iftherewereanidentity e,thenitwouldsatisfy,forall a ∈ ℤ , a = a ★ e = a + 2e + ae ,so  0 = 2e + ae.Theonlysolutionisclearly e = 0,so0istheonlycandidateforanidentityelement.  However, 0 ★ 1 = 2,so0isnotanidentity.   (e)Isℤagroupwithrespecttoeither●or⭑? Yes,with●. Itisclearthat●isclosed(thatis,if a, b ∈ ℤ then a + b − 3 ∈ ℤ ).  Byparts(a)and(c),●isassociativeandhasidentity. Foranyinteger a ∈ ℤ,theinverseof awithrespectto●is 6 − a ,since (6 − a ) ∙ a = 6 − a + a − 3 = 3 ,and a ∙ (6 − a) = a + 6 − a − 3 = 3 .

UQAttic.net[Chat] 

MATH10612012Semester1Exam



ℤisnotagroupwithrespectto⭑,sincetheoperationisnotassociativeandhasnoidentity.  Q15:(a)Youaretoldthat {a, b , c, d, e} formsanabeliangroupoforder5,withthegroup  operationgivenbythefollowingCayleytable.However,thetableisincomplete.Pleasecomplete thetablesothatthisdoesindeedformanabeliangroup.  First,wecanrecognisethateachgroupelementmustoccurpreciselyonceineachrowand column,andstandardsudokustyletrickscanfillinmostofthetable.Sincethegroupisabelian, thetablewillbesymmetricaboutthemaindiagonalaswell.  Then,noticethat a1 = a, a2 = a ∙ a = c , a3 = a ∙ a ∙ a = a ∙ c = d, a4 = b, a5 = e.So,  b ∙ c = a4 ∙ a2 = a6 = a1 = aand c ∙ c = a2 ∙ a2 = a4 = b.Thiswillallowtherestofthetabletobe  filledin.(Ifyoudidn’tgetthesudokustyletrick,thenyoucouldhavealsodonethepowersofa trickoneveryemptycelltoendupfillingoutthetable).  °

e

a

b

c

d

e

e

a

b

c

d

a

a

c

e

d

b

b

b

e

d

a

c

c

c

d

a

b

e

d

d

b

c

e

a

  (b)Let G = {1, 2, 4, 5, 7, 8}andlet °denotemultiplicationmodulo9.Verifythat (G,°) isa  group.Hint:startingwithaCayleytablewillhelp.  ACayleytableis: °

1

2

4

5

7

8

1

1

2

4

5

7

8

2

2

4

8

1

5

7

4

4

8

7

2

1

5

5

5

1

2

7

8

4

7

7

5

1

8

4

2

8

8

7

5

4

2

1

MATH10612012Semester1Exam

UQAttic.net[Chat] 



 SinceeveryentryinthetableisinG,theoperationisclosed.Itisalsoeasytoseefromthetable thatGhasanidentity1,andsince1occursineveryrowandcolumn,everyelementhasan inverse.  Associativityfollowsfromassociativityofmultiplicationintheintegers.  (c)Theabovegroup (G,°)frompart(b)hasorder6.Ifpossible,giveanexampleofasubgroup of (G,°)oforder(i)2;(ii)3;(iii)4.Ifnosuchsubgroupexists,giveabriefreasonwhy(refer,by name,toanytheoremused). (i)Theset {1, 8} formsasubgroupoforder2. (ii)Theset {1, 4, 7} formsasubgroupoforder3. (iii)NosuchsubgroupexistsbyLagrange’sTheorem,since4doesnotdivide6....


Similar Free PDFs