Feliciano and Uy Integral Calculus answers PDF

Title Feliciano and Uy Integral Calculus answers
Author John Siegfred Alulod
Course BS Mathematics
Institution Pamantasan ng Lungsod ng Maynila
Pages 114
File Size 3 MB
File Type PDF
Total Downloads 353
Total Views 511

Summary

EXERCISE 9 BASIC INTEGRATION FORMULAS1. 6 π‘₯ 2 βˆ’ 4 π‘₯+ 5 𝑑π‘₯= 6 π‘₯3 3 βˆ’4 π‘₯ 2 2 + 5π‘₯+𝑐= πŸπ’™πŸ‘βˆ’ πŸπ’™πŸ+πŸ“π’™+𝒄3. π‘₯( π‘₯βˆ’1)𝑑π‘₯= π‘₯ π‘₯βˆ’ π‘₯ 𝑑π‘₯= π‘₯3 2 𝑑π‘₯ βˆ’ π‘₯𝑑π‘₯= πŸπŸ“π’™πŸ“ πŸβˆ’ πŸπŸπ’™πŸ+𝒄5. 2 π‘₯2 +4π‘₯βˆ’ 3 π‘₯ 2 𝑑π‘₯= 2 + 4 π‘‹βˆ’ 𝑋 32 𝑑π‘₯= 2 𝑑π‘₯+ 4 π‘₯𝑑π‘₯ βˆ’ π‘₯ 32 𝑑π‘₯= 2 π‘₯+ 4 𝑑π‘₯π‘₯ βˆ’ 3 π‘₯βˆ’ 1 βˆ’ 1 𝑑π‘₯= πŸπ’™+πŸ’π’π’π’™+ πŸ‘π’™+𝒄7. π‘₯3 βˆ’ 8 π‘₯βˆ’ 2 𝑑π‘₯ = Factor, (x-c), c = 2 P(c)...


Description

EXERCISE 9.1

BASIC INTEGRATION FORMULAS

1. 6π‘₯ 2 βˆ’ 4π‘₯ + 5 𝑑π‘₯ =

βˆ’

6π‘₯ 3 3

7.

+ 5π‘₯ + 𝑐

4π‘₯ 2 2

3. π‘₯( π‘₯ βˆ’ 1)𝑑π‘₯

=

= π‘₯ 2 𝑑π‘₯ βˆ’ π‘₯𝑑π‘₯ 3

5.

π’™πŸ βˆ’ πŸ“

2π‘₯ 2 +4π‘₯βˆ’3 π‘₯2

𝑑π‘₯

= 2+

4

= 2𝑑π‘₯ + = 2π‘₯ + 4

𝟏 𝟐 𝒙 𝟐

=

+𝒄

=

9. 𝑋

βˆ’

4

𝑑π‘₯

π‘₯

π‘₯

3 𝑋2

𝑑π‘₯

𝑑π‘₯ βˆ’

βˆ’

= πŸπ’™ + πŸ’π’π’π’™ +

πŸ‘

𝒙

(𝑋 2 +2𝑋+4)(π‘‹βˆ’2) (π‘‹βˆ’2)

= (π‘₯ 2 + 2π‘₯ + 4)𝑑π‘₯

= π‘₯ π‘₯ βˆ’ π‘₯ 𝑑π‘₯ 𝟐 πŸ“

𝑑π‘₯

= Factor, (x-c), c = 2 P(c) = 0 – the (x-c ) is the factor P(c) = 0 2 1 0 0 -8 2 4 8 12 4 0

= πŸπ’™πŸ‘ βˆ’ πŸπ’™πŸ + πŸ“π’™ + 𝒄

=

π‘₯ 3 βˆ’8 π‘₯βˆ’2

3 𝑑π‘₯ π‘₯2

3π‘₯ βˆ’1 βˆ’1

+𝒄

𝑑π‘₯

π‘₯3 3

π’™πŸ‘ πŸ‘

+

2π‘₯ 2 2

+ 4π‘₯ + 𝑐

+ π’™πŸ + πŸ’π’™ + 𝒄

π‘₯ 4 βˆ’ 2π‘₯ 3 + π‘₯ 2 𝑑π‘₯

= π‘₯ 2 𝑑π‘₯ βˆ’ 2π‘₯

=

π’™πŸ‘ πŸ‘

βˆ’

πŸ“

πŸ”πŸ‘ πŸ“

+

π’™πŸ 𝟐

2 3

𝑑π‘₯ + π‘₯𝑑π‘₯

+π‘ͺ

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

1

EXERCISE 9.2

INTEGRATION BY SUBSTITUTION

1. 2 βˆ’ 3π‘₯ 𝑑π‘₯

5.

𝑑𝑒

Let u = 2 - 3x

βˆ’π‘‘π‘’ = 𝑑π‘₯ 3

= 𝑒 (βˆ’ 1

2

𝑑𝑒 3

𝑑π‘₯

= βˆ’3

1 1 = βˆ’ 𝑒 2 𝑑𝑒 3

=βˆ’

=βˆ’

3

1 2π‘₯ 2 3 3

+𝑐

πŸ‘ 𝟐 πŸβˆ’πŸ‘π’™ 𝟐

πŸ—

+𝒄

3. π‘₯ 2 (2π‘₯ 3 βˆ’ 1)4 𝑑π‘₯ Let u = 2π‘₯ 3 βˆ’ 1 𝑑𝑒 = 6π‘₯ 2 𝑑π‘₯

𝑑𝑒 = π‘₯ 2 𝑑π‘₯ 6

= π‘₯ 2 (2π‘₯ 3 βˆ’ 1)4 𝑑π‘₯ 𝑑𝑒 = (𝑒4 )( ) 6

=

= = =

Let u = π‘₯ 2 + 3π‘₯ + 4 𝑑𝑒 = (2π‘₯ + 3)𝑑π‘₯ =

)

(2 π‘₯ +3)𝑑π‘₯ π‘₯ 2 +3π‘₯+4

𝑑𝑒

𝑑π‘₯

= 2π‘₯ + 3

𝑑𝑒

𝑒

= 𝑙𝑛𝑒 + 𝑐

= π₯𝐧 π’™πŸ + πŸ‘π’™ + πŸ’ + 𝒄 π‘₯ 2 𝑑π‘₯

(π‘₯ 3 βˆ’1)4

7.

Let u = π‘₯ 3 βˆ’ 1 𝑑𝑒 = π‘₯ 2 𝑑π‘₯ 3

= = = =

𝑑𝑒 𝑑π‘₯

= 3π‘₯ 2

𝑑𝑒 3 π‘₯4

1 3

π‘’βˆ’4

1 𝑒 βˆ’3 3 βˆ’3 𝑒 βˆ’3 βˆ’9

+𝑐

+𝑐

= βˆ’ πŸ—(π’™πŸ‘ βˆ’πŸ)πŸ‘ + 𝒄 𝟏

1 4 (𝑒 )𝑑𝑒 6

1 𝑒5 +𝑐 6 5 𝑒5

30

+𝑐

(πŸπ’™πŸ‘ βˆ’ 𝟏)πŸ“ +𝒄 πŸ‘πŸŽ DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

2

EXERCISE 9.2 𝑑π‘₯ π‘₯𝑙𝑛 2 π‘₯

9.

Let u = 𝑙𝑛π‘₯ 𝑑π‘₯ = 𝑑𝑒

𝑑π‘₯ π‘₯

𝑑𝑒 =

INTEGRATION BY SUBSTITUTION 13. cos 4 π‘₯ sin π‘₯𝑑π‘₯ Let u = cos π‘₯

1 π‘₯

= 𝑒4 βˆ’π‘‘π‘’ =βˆ’

= π‘’βˆ’2 𝑑𝑒 =

𝑒 βˆ’1 βˆ’1

= βˆ’

𝟏

+𝒄

𝑑π‘₯

𝑒 π‘₯ βˆ’1

11.

Let u = 𝑒 π‘₯

= ( =

=βˆ’

+𝑐

𝒍𝒏𝒙

1 π‘’βˆ’1

+𝑐

πœπ¨π¬πŸ“ 𝒙 + πŸ“

𝒄

Let u = 3π‘₯

𝑑𝑒 = 𝑒 π‘₯ 𝑑π‘₯

βˆ’ 𝑒 )𝑑𝑒 1

1 1 𝑑𝑒 βˆ’ 𝑒 π‘’βˆ’1

𝑑𝑣 = 𝑑𝑒 𝑒 1 𝑒

𝑒5 5

15. 1 + 2 sin 3π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯

Let v = 𝑒 βˆ’ 1

=

= βˆ’sin π‘₯

= - 𝑒4 𝑑𝑒

1 𝑑𝑒 𝑒2

=

𝑑π‘₯

𝑑𝑒 = βˆ’sin π‘₯ 𝑑π‘₯

1 𝑑π‘₯ ( ) 𝑙𝑛 2 π‘₯ π‘₯

=

𝑑𝑒

𝑑𝑣 βˆ’

𝑑𝑒

= ln (1 βˆ’ 𝑒 π‘₯ )

= 1 + 2 sin 𝑒 π‘π‘œπ‘ π‘’ (

;𝑒 =

ln|𝑒 π‘₯ |

𝑑𝑒

3

1 + 2 sin 𝑒 π‘π‘œπ‘ π‘’π‘‘π‘’

1 3

)

Let v =1 + 2 sin 𝑒

1 𝑑𝑣 𝑒

= ln|𝑒 βˆ’ 1| βˆ’

𝑑𝑒 = 𝑑π‘₯ 3

=

= 𝑙𝑛𝑒 βˆ’ 𝑙𝑛𝑒 + 𝑐 𝑒 =π‘’βˆ’1

𝑑𝑒 =3 𝑑π‘₯

𝑑𝑣

𝑒π‘₯

+𝑐

= π₯𝐧 𝟏 βˆ’ 𝒆𝒙 βˆ’ 𝒙 + 𝒄

𝑑𝑒

=

= 2π‘π‘œπ‘ π‘’ ;

𝑑𝑣 2

= π‘π‘œπ‘ π‘’π‘‘π‘’

1 + 2 sin 3π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯ 𝑣

1

𝑑𝑣

=

1 [ 3

=

1 2𝑣 2 6 3

=

(𝟏+πŸπ’”π’Šπ’π’™)𝟐 πŸ—

3

2

( 2 )] +𝑐 πŸ‘

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

3

EXERCISE 9.2

INTEGRATION BY SUBSTITUTION

𝑠𝑒𝑐 2 π‘₯𝑑π‘₯ ` π‘Ž+𝑏 π‘‘π‘Žπ‘›π‘₯

17.

Let u = π‘Ž + 𝑏 π‘‘π‘Žπ‘›π‘₯

𝑑𝑒 𝑑π‘₯

= =

=𝑏

𝑑𝑒

𝑏

sin π‘₯ π‘π‘œπ‘ π‘₯

𝑑𝑒 𝑏

𝒂 + 𝒃𝒕𝒂𝒏𝒙 + 𝒄

Let u = π‘‘π‘Žπ‘›3π‘₯

= 3𝑠𝑒𝑐 2 3π‘₯ ;

= 𝑒

=

1

[ 3

𝑔 (π‘₯)

= 𝑄π‘₯𝑑π‘₯ +

𝑅 π‘₯

𝑔 π‘₯

𝑑(π‘₯)

* using synthetic division

-12 -8

π‘‘π‘Žπ‘›3π‘₯ 𝑠𝑒𝑐2 3π‘₯𝑑π‘₯

1

𝑓 (π‘₯ )

π‘₯+4

-4 3 14 13

𝟏 π₯𝐧 𝒃

19.

𝑑𝑒 𝑑π‘₯

= 𝑠𝑒𝑐2 π‘₯𝑑π‘₯

𝑒

1 𝑑𝑒 𝑒 𝑏

=

;

=

𝑑π‘₯

3π‘₯ 2 +14π‘₯+14

21.

𝑑𝑒 2( 3 3

2𝑒 2 3

𝑑𝑒 3

)

]+𝑐 3

=

1 2tan 3π‘₯ 2 3 3

=

𝟐(𝐭𝐚𝐧 πŸ‘π’™)𝟐 πŸ—

πŸ‘

= 𝑠𝑒𝑐 2 3π‘₯𝑑π‘₯

3 2 5 - R(x) 𝑄 π‘₯ = 3π‘₯ + 2

π‘₯ + 4 = π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ 𝑔(π‘₯) = (3π‘₯ + 2) 𝑑π‘₯ +

𝑑π‘₯

For the second integral : 𝑙𝑒𝑑 𝑒 = π‘₯ + 4

;

= (3π‘₯ + 2)𝑑π‘₯ + 5 3π‘₯ 2

=[ =

+𝑐

π‘₯+4

5

2

πŸ‘π’™πŸ 𝟐

𝑑𝑦 = 1 ; 𝑑𝑒 = 𝑑π‘₯ 𝑑π‘₯ 𝑑𝑒

𝑒

+ 2π‘₯ + 5𝑙𝑛𝑒 + 𝑐]

+ πŸπ’™ + πŸ“π₯𝐧(𝒙 + πŸ’) + 𝒄

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

4

EXERCISE 9.2

π‘₯ 5 βˆ’2π‘₯ 3 βˆ’2π‘₯ π‘₯ 2 +1

23. π‘₯2

INTEGRATION BY SUBSTITUTION

𝑑π‘₯

π‘₯ 3 βˆ’ 3π‘₯ +1 βˆ’ 2π‘₯ 3 βˆ’ 2π‘₯ π‘₯5 + π‘₯3 βˆ’3π‘₯ 3 βˆ’ 2π‘₯ βˆ’3π‘₯ 3 βˆ’ 3π‘₯ π‘₯ π‘₯5

𝑓(π‘₯)

dx = 𝑄 π‘₯ 𝑑π‘₯ +

𝑔(π‘₯)

= π‘₯ 3 βˆ’ 3π‘₯ 𝑑π‘₯ +

=4 βˆ’ π‘₯4

3π‘₯ 2 2

π‘₯

π‘₯ 𝑑π‘₯ π‘₯ 2 +1

+

𝑅(π‘₯)

𝑔(π‘₯)

π‘₯ 2 +1

𝑑π‘₯

𝑑π‘₯

For the 2nd term Let u = x2+1 𝑑𝑒 = 2π‘₯ 𝑑π‘₯

𝑑𝑒 = π‘₯𝑑π‘₯ 2 =4 βˆ’ π‘₯4

=

π’™πŸ’ πŸ’

3π‘₯ 2

βˆ’

2

+

πŸ‘π’™πŸ 𝟐

𝑑𝑒 2

𝑒

+ 𝟐 π₯𝐧 π’™πŸ + 𝟏 + 𝒄 𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

5

EXERCISE 9.3

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

𝑠𝑒𝑐5π‘₯π‘‘π‘Žπ‘›5π‘₯𝑑π‘₯

𝐿𝑒𝑑 𝑒 = 5π‘₯

1.

𝑑𝑒 𝑑π‘₯

𝑑𝑒 5

=5

7.

= 𝑑π‘₯

= π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’

𝑑𝑒

= =

5

= 5 π‘ π‘’π‘π‘’π‘‘π‘Žπ‘›π‘’π‘‘π‘’

=

=

3.

1

5

𝟏

πŸ“

𝑠𝑒𝑐𝑒 + 𝑐

𝑠𝑖𝑛 2 π‘₯

𝑑π‘₯

𝑠𝑖𝑛π‘₯ 𝑠𝑖𝑛 2 π‘₯

=

1 𝑠𝑖𝑛π‘₯

=

𝑑π‘₯ +

π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛 2 π‘₯

𝑑𝑒 𝑑π‘₯

𝑑π‘₯

𝑑π‘₯

; Let u= 2 π‘₯

𝑑𝑒

𝑑π‘₯

=

= =2 =2 =2

1

1

2𝑑𝑒 = 𝑑π‘₯

1 2

π‘ π‘–π‘›π‘’π‘π‘œπ‘‘π‘’ 2𝑑𝑒

𝑑𝑒

𝑠𝑖𝑛𝑒 π‘π‘œπ‘‘π‘’ 𝑑𝑒

cos 3 π‘₯ 1+𝑠𝑖𝑛π‘₯ 𝑑π‘₯ cos 3 π‘₯

= π‘π‘œπ‘ π‘₯ ; 𝑑𝑒 = π‘π‘œπ‘ π‘₯𝑑π‘₯

= 𝑠𝑖𝑛π‘₯ +

= βˆ’ 𝒍𝒏 𝒄𝒔𝒄𝒙 + 𝒄𝒐𝒕𝒙 βˆ’ 𝒄𝒔𝒄𝒙 + 𝒄

1

1βˆ’sin 2 π‘₯

= 𝑠𝑖𝑛π‘₯ + 𝑒𝑑𝑒

𝑑π‘₯ + π‘π‘œπ‘‘π‘₯𝑐𝑠𝑐π‘₯𝑑π‘₯

sin π‘₯ cot π‘₯ 2 2

(co s 3 π‘₯+cos 3 π‘₯𝑠𝑖𝑛π‘₯ )𝑑π‘₯

𝐿𝑒𝑑 𝑒 = 𝑠𝑖𝑛π‘₯

= π’”π’Šπ’π’™ +

= 𝑐𝑠𝑐𝑑π‘₯ + π‘π‘œπ‘‘π‘₯𝑐𝑠𝑐π‘₯𝑑π‘₯

5.

(1βˆ’π‘ π‘–π‘›π‘₯ )(1+𝑠𝑖𝑛π‘₯ )

= 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

π’”π’†π’„πŸ“π’™ + 𝒄

𝑠𝑖𝑛π‘₯ +π‘π‘œπ‘ π‘₯

1+𝑠𝑖𝑛π‘₯ . 1+𝑠𝑖𝑛π‘₯ 1βˆ’π‘ π‘–π‘›π‘₯ (cos 3 π‘₯ ) 1+𝑠𝑖𝑛π‘₯ 𝑑π‘₯

= π‘π‘œπ‘ π‘₯ 1 + 𝑠𝑖𝑛π‘₯ 𝑑π‘₯

1

=

cos 3 π‘₯𝑑π‘₯

9.

𝑒2 2

+𝑐

𝐬𝐒𝐧𝟐 𝒙 𝟐

+𝒄

1 + π‘‘π‘Žπ‘›π‘₯ 2 𝑑π‘₯

= (1 + 2π‘‘π‘Žπ‘›π‘₯ + tan2 π‘₯)𝑑π‘₯

= [2π‘‘π‘Žπ‘›π‘₯ + (1 + tan2 π‘₯)]𝑑π‘₯

= 2 π‘‘π‘Žπ‘›π‘₯𝑑π‘₯ + sec 2 π‘₯𝑑π‘₯

= 2 βˆ’π‘™π‘›|π‘π‘œπ‘ π‘₯| + π‘‘π‘Žπ‘›π‘₯ + 𝑐

= βˆ’πŸ 𝒍𝒏 |𝒄𝒐𝒔𝒙| + 𝒕𝒂𝒏𝒙 + 𝒄

π‘π‘œπ‘ π‘’ ) 𝑠𝑖𝑛𝑒

𝑠𝑖𝑛𝑒 (

1 π‘π‘œπ‘ π‘’

(𝑑𝑒)

= 2 𝑠𝑒𝑐𝑒𝑑𝑒

= πŸπ’π’ 𝒄𝒔𝒄𝒙 + 𝒄𝒐𝒕𝒙 + 𝒄 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

6

EXERCISE 9.3

11.

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

π‘π‘œπ‘  6 π‘₯𝑑π‘₯ cos 2 3π‘₯

15.

Let u = 3x ; 2u = 6x

𝑑𝑒

𝑑π‘₯

=

=3 ; π‘π‘œπ‘ 2𝑒

2

=3

𝑑𝑒

cos 2 𝑒 π‘π‘œπ‘ π‘’

1

π‘π‘œπ‘ π‘’ π‘π‘œπ‘ π‘’

= 3 𝑠𝑒𝑐𝑒𝑑𝑒 2

=

3

=

𝑠𝑖𝑛 2 π‘₯𝑑π‘₯

=

1 π‘π‘œπ‘ π‘₯

𝑑π‘₯

= 𝑠𝑒𝑐π‘₯𝑑π‘₯

= 𝒍𝒏 𝒔𝒆𝒄𝒙 + 𝒕𝒂𝒏𝒙 + 𝒄

1

.

𝑑𝑒 2

𝑑𝑒 2

= 𝑑π‘₯

2

π‘‘π‘Žπ‘›π‘’π‘‘π‘’

𝑑π‘₯

2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯𝑑π‘₯

𝑑π‘₯ π‘π‘œπ‘ π‘₯

𝑑π‘₯

𝑑π‘₯

𝟏 = βˆ’ π₯𝐧 π’„π’π’”πŸπ’™ + 𝒄 𝟐

2𝑠𝑖𝑛π‘₯π‘π‘œ 𝑠 2 π‘₯

=

=2

𝑠𝑖𝑛𝑒 π‘π‘œπ‘ π‘’

πŸ‘

(2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ )π‘π‘œπ‘ π‘₯

𝑑π‘₯

π‘π‘œπ‘  2π‘₯

𝑑𝑒 𝑑π‘₯

𝟐

=

2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ π‘π‘œπ‘  2π‘₯

Let u = 2x

= π₯𝐧 π’”π’†π’„πŸ‘π’™ + π’•π’‚π’πŸ‘π’™ + 𝒄

13.

𝑑π‘₯

𝑠𝑖𝑛 2 π‘₯

=

𝑑𝑒

𝑠𝑖𝑛 2 π‘₯π‘π‘œπ‘  2π‘₯

(4𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ )(𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ ) 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ π‘π‘œπ‘  2π‘₯

=

= 𝑑π‘₯

𝑑𝑒 3

4 sin 2 π‘₯π‘π‘œ 𝑠 2 π‘₯

𝑠𝑖𝑛 3 π‘₯π‘‘π‘Žπ‘› 3π‘₯

17.

Let u = 3x

𝑑𝑒 𝑑π‘₯

=

=3 𝑑𝑒 3

𝑑𝑒 3

= 𝑑π‘₯

π‘ π‘–π‘›π‘’π‘‘π‘Žπ‘›π‘’

=3 𝑐𝑠𝑐𝑒 + 𝑐 1

= βˆ’ πŸ‘ π’„π’”π’„πŸ‘π’™ + 𝒄 𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

7

EXERCISE 9.4 𝑑π‘₯ 𝑒 2π‘₯

1.

𝑒 βˆ’2π‘₯ dx

=

INTEGRATION OF EXPONENTIAL FUNCTIONS

𝑑𝑒

𝑑𝑒 𝑙𝑒𝑑 𝑒 = 2π‘₯ ; = βˆ’2 ; βˆ’ 2 = 𝑑π‘₯ 𝑑π‘₯ 𝑑𝑒 = 𝑒 𝑒 (βˆ’ ) 2 =βˆ’

𝑒 𝑒 𝑑𝑒

1

=βˆ’ 𝑒 𝑒 + 𝑐 2 2

1

=βˆ’

2𝑒 𝑒 1

+𝑐

=βˆ’ 𝟐 (π’†βˆ’πŸπ’™) + 𝒄 𝟏

3. 𝑒 𝑠𝑖𝑛4π‘₯ π‘π‘œπ‘ 4π‘₯𝑑π‘₯ 𝑑𝑒 𝑒 𝑠𝑖𝑛𝑒 π‘π‘œπ‘ π‘’(

1 4

=

4

𝑒 𝑠𝑖𝑛𝑒 π‘π‘œπ‘ π‘’π‘‘π‘’

=

= =

4 1 4

𝑒 𝑣 𝑑𝑣

𝑒 +𝑐 𝑣

π’†π’”π’Šπ’πŸ’π’™ πŸ’

+𝒄

=

3π‘₯

2𝑑𝑒 𝑒𝑒 ( 3

;

2

)

2

𝑑π‘₯

2𝑑𝑒 = 𝑑π‘₯ 3

)

= 3 𝑒 𝑒 𝑑𝑒 2

𝑒

+𝑐

3π‘₯ 2

=

2 3

=

𝟐 π’†πŸ‘π’™ πŸ‘

+𝒄

𝑙𝑒𝑑 𝑒 = 3 βˆ’ 2π‘₯ ;

𝑑𝑣 = cos 𝑒 ; 𝑑𝑣 = π‘π‘œπ‘ π‘’π‘‘π‘’ 𝑙𝑒𝑑 𝑣 = 𝑠𝑖𝑛𝑒 ; 𝑑𝑒 1

𝑙𝑒𝑑 𝑒 =

3π‘₯

7. 53βˆ’2π‘₯ 𝑑π‘₯

𝑑𝑒 𝑑𝑒 = 𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = 4π‘₯ ; = 4; 4 𝑑π‘₯

=

𝑒 3π‘₯ 𝑑π‘₯ = 𝑒

5.

= 5𝑒 (βˆ’ =βˆ’

1 2

= βˆ’2 =βˆ’

𝑑𝑒

2

5𝑒 𝑑𝑒

1 5 3βˆ’2π‘₯ 𝑙𝑛5

πŸ“πŸ‘βˆ’πŸπ’™ π’π’πŸπŸ“

)

𝑑𝑒 𝑑𝑒 = βˆ’2 ; βˆ’ = 𝑑π‘₯ 𝑑π‘₯ 2

+𝑐

+𝒄

9. 3π‘₯ 2π‘₯ 𝑑π‘₯

π‘Ž π‘₯ 𝑏 π‘₯ = (π‘Žπ‘)π‘₯ = 6π‘₯ 𝑑π‘₯ =

πŸ”π’™

π’π’πŸ”

+𝒄

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

8

EXERCISE 9.5

INTEGRATION OF HYPERBOLIC FUNCTIONS

𝑠𝑖𝑛𝑕 3π‘₯ βˆ’ 1 𝑑π‘₯

1.

Let u = 3π‘₯ βˆ’ 1 = 3 ; 𝑑π‘₯ =

𝑑𝑒 𝑑π‘₯

= 𝑠𝑖𝑛𝑕 𝑒 (

= =

𝑑𝑒

3.

𝑠𝑖𝑛𝑕 𝑒𝑑𝑒

1 3

𝑑𝑒

3

𝟏 𝒄𝒐𝒔𝒉 πŸ‘

=

)

= 𝒕𝒂𝒏𝒉 (𝒍𝒏𝒙) + 𝒄

πŸ‘π’™ βˆ’ 𝟏 + 𝒄

𝑐𝑠𝑐𝑕2 1 βˆ’ π‘₯ 2 π‘₯𝑑π‘₯ Let u=1 βˆ’ π‘₯ 2

βˆ’

𝑑𝑒 𝑑π‘₯

= -2π‘₯

𝑑𝑒 = π‘₯𝑑π‘₯ 2

= 𝑐𝑠𝑐𝑕2 𝑒(βˆ’

1 𝑑𝑒 𝑑π‘₯ 𝑙𝑒𝑑 𝑒 = 𝑙𝑛π‘₯ ; 𝑑π‘₯ = ; 𝑑𝑒 = π‘₯ π‘₯ 𝑠𝑒𝑐𝑕2 𝑒𝑑𝑒

3

π‘π‘œπ‘ π‘• 𝑒𝑑𝑒 + c

1

=

3

𝑠𝑒𝑐 𝑕 2 𝑙𝑛π‘₯ 𝑑π‘₯ π‘₯

5.

𝑑𝑒

2

=βˆ’ 2 𝑐𝑠𝑐𝑕2 𝑒𝑑𝑒

= π‘‘π‘Žπ‘›π‘•π‘’ + 𝑐

7.

𝑐𝑠𝑐𝑕

1 π‘₯ 2

Let u = 2 π‘₯ ; 1

π‘π‘œπ‘‘π‘• 2 π‘₯𝑑π‘₯

𝑑𝑒

𝑑π‘₯

1

=

1 2

= 2 𝑐𝑠𝑐𝑕𝑒 π‘π‘œπ‘‘π‘•π‘’π‘‘π‘’

; 2𝑑𝑒 = 𝑑π‘₯

= 2(βˆ’π‘π‘ π‘π‘•π‘’ + 𝑐)

= βˆ’πŸπ’„π’”π’„π’‰ 𝟐 𝒙 + 𝒄 𝟏

)

1

=βˆ’ 2 (βˆ’π‘π‘œπ‘‘π‘•π‘’ + 𝑐) 1

= 𝟐 𝒄𝒐𝒕𝒉 𝟏 βˆ’ π’™πŸ + 𝒄 𝟏

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

9

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

1. Given slope 3π‘₯ 2 + 4 𝑑𝑦 = 3π‘₯ 2 + 4 𝑑π‘₯

𝑑𝑦 = 3π‘₯ 2 + 4 𝑑π‘₯

𝑑𝑦 = 3π‘₯ 2 + 4 𝑑π‘₯

𝑦=

3π‘₯ 3 3

+ 4π‘₯ + 𝑐

π’š = πŸ‘π’™πŸ + πŸ’π’™ + 𝒄

3. Given slope 𝑑𝑦 π‘₯ + 1 = 𝑑π‘₯ 𝑦 βˆ’ 1

π‘₯+1 π‘¦βˆ’1

𝑦 βˆ’ 1 𝑑𝑦 = π‘₯ + 1 𝑑π‘₯

𝑦 2 βˆ’ 2𝑦 =

π‘₯2

+π‘₯+𝑐2

𝑦 2 βˆ’ 2𝑦 = π‘₯ 2 + 2π‘₯ + 2𝑐 2

π’™πŸ βˆ’ π’šπŸ + πŸπ’š + πŸπ’™ + πŸπ’„ = 𝟎 5. Given slope 𝑑𝑦 1 = 𝑑π‘₯ π‘₯𝑦 𝑦𝑑𝑦 =

𝑦2 2

=

𝑑π‘₯

ln π‘₯ 2 2

π‘₯𝑦 1

7. Given slope

𝑑𝑦

𝑦2 = π‘₯

𝑑π‘₯ 𝑑𝑦 𝑑π‘₯ = 2 π‘₯ 𝑦 βˆ’

+𝑐 2

π’šπŸ = π’π’π’™πŸ + πŸπ’„

π‘₯

, through 1,4

1 = 𝑙𝑛π‘₯ + 𝑐 4

βˆ’ ln π‘₯ βˆ’

1 =𝑐 4

1 βˆ’ ln 1 βˆ’ = 𝑐 4

𝑐=βˆ’

1 4

βˆ’ ln π‘₯ βˆ’

1 1 + = 0 4𝑦 𝑦 4

βˆ’4𝑦 ln π‘₯ βˆ’ 4 + 𝑦 = 0 πŸ’π’š π₯𝐧 𝒙 βˆ’ π’š + πŸ’ = 𝟎

9. Given slope 𝑦, through 1,1 𝑑𝑦 = 𝑦 𝑑π‘₯

𝑦 βˆ’ 2 𝑑𝑦 = 𝑑π‘₯ 1

𝑦2

=π‘₯+𝑐

1

π‘₯

𝑦2

1 2

2𝑦

1

2=

π‘₯+𝑐

When π‘₯ = 1 , 𝑦 = 1

21 =1+𝑐 ; 𝑐 =1 2𝑦

1

2

=π‘₯+𝑐

2

πŸ’π’š = 𝒙 + 𝟏 𝟐

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

10

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

11. Given slope π‘₯ βˆ’2 , through 1,2 1 𝑑𝑦 = 2 𝑑π‘₯ π‘₯ 𝑑𝑦 =

𝑑π‘₯

π‘₯2

1 𝑦 =βˆ’ +𝑐 π‘₯ 1 2=βˆ’ +𝑐 1 2 = βˆ’1 + 𝑐 𝑐=3

𝑦=βˆ’

1 π‘₯

+3x

π‘₯𝑦 = βˆ’1 + 3π‘₯

π’™π’š βˆ’ πŸ‘π’™ + 𝟏 = 𝟎

v = -32t + vo when t = 1 sec, s=h=48ft h=-16t2+ vot + c1 48 = -16(1)2 + vo(1) + c2 64 - vo = c2 When t = 0, s = 0, c2 = 0 s = -16t2 + vot when t = 1 sec, s = 48 s = -16t2 + c1t 48 = -16(1)2 + c1(1) c1=64 s=-16t2 + 64t v = -32t + 64 @ max, v = 0

13. 0 = -32t + 64 a=-32 ft/sec2 32t=64 a=-2

𝑑𝑦 = βˆ’32 𝑑𝑑

𝑑𝑣 = βˆ’ 32𝑑𝑑

t = 2 sec s = -16t2 + 64t s = -16(2)2 + 64(2) s = 64ft

v=-32t+c

𝑑𝑠 = βˆ’32𝑑 + 𝑐1 𝑑𝑑

𝑑𝑠 = (βˆ’32𝑑 + 𝑐1 )𝑑𝑑

s=16t2 + c1t + c2 when t = 0, v = vo v=-32t + c1 vo= -32(0) + c1 vo =c1 DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

11

EXERCISE 9.6

APPLICATION OF INDEFINITE INTEGRATION

15. a = 32ft/sec2 a = 32

𝑑𝑣 = 32 𝑑𝑑

𝑑𝑣 = 32𝑑𝑑

v = 32t + c1

𝑑𝑠 = 32𝑑 + 𝑐1 𝑑𝑑

𝑑𝑠 = 32𝑑 + 𝑐1 𝑑𝑑

S = 16t2 + c1 + c2

when t = 0, v = 0 c1 = 0 v = 32t when t = 0 , s = 0 c2 = 0 s = 16t2 𝑑= 𝑑=

400 16 20 4

t = 5 sec v = vt *since it is a free falling body, its velocity is ( - ) vt = -32t vt = -32(5) vt = -160 ft/sec

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

12

EXERCISE 10.1

PRODUCT OF SINES AND COSINES

1. Κƒ sin 5π‘₯ sin π‘₯ 𝑑π‘₯

5. Κƒ cos 3π‘₯ βˆ’ 2πœ‹ cos π‘₯ + πœ‹ 𝑑π‘₯

= [cos 𝑒 βˆ’ π‘₯ βˆ’ cos(𝑒 + 𝑣)]𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 3π‘₯ βˆ’ 2πœ‹

= 2 sin 𝑒 sin 𝑣 𝑑π‘₯ 𝑒 = 5π‘₯

1 = Κƒ[cos 𝑒 + 𝑣 + cos (𝑒 βˆ’ 𝑣 )]𝑑π‘₯ 2

𝑣 =π‘₯+πœ‹

𝑣=π‘₯

1 = Κƒ[cos 5π‘₯ βˆ’ π‘₯ βˆ’ cos (5π‘₯ + π‘₯)]𝑑π‘₯ 2

ο‚·

1 = Κƒ[cos 4π‘₯ βˆ’ cos 6π‘₯]𝑑π‘₯ 2

ο‚·

1 = [Κƒ cos 4π‘₯𝑑π‘₯ βˆ’ Κƒ cos 6π‘₯𝑑π‘₯ 2

= =

1 1 [ sin 4π‘₯ 2 4

1 βˆ’ 6 sin 6π‘₯

π’”π’Šπ’ πŸ’π’™ π’”π’Šπ’πŸ”π’™ βˆ’ +π‘ͺ πŸ– 𝟏𝟐

]+𝐢

=βˆ’

1 5

= 2π‘₯ βˆ’ 3πœ‹

= βˆ’π‘π‘œπ‘ 4π‘₯

π‘“π‘œπ‘Ÿ cos 2π‘₯ βˆ’ 3πœ‹ = cos 2π‘₯π‘π‘œπ‘  3πœ‹ + sin 2π‘₯𝑠𝑖𝑛 3πœ‹ = βˆ’ cos 2π‘₯

= 2 Κƒ(cos 4π‘₯ βˆ’ cos 2π‘₯)𝑑π‘₯ 1

1 = Κƒ[sin 5π‘₯ + 2 + sin(3π‘₯ βˆ’ 8)]𝑑π‘₯ 2

1

𝑒 βˆ’ 𝑣 = 3π‘₯ βˆ’ 2πœ‹ βˆ’ π‘₯ + πœ‹

π‘“π‘œπ‘Ÿ cos 4π‘₯ βˆ’ πœ‹ = cos 4π‘₯π‘π‘œπ‘ πœ‹ + 𝑠𝑖𝑛4π‘₯π‘ π‘–π‘›πœ‹

1 = Κƒ [sin 9x βˆ’ 3 + x + 5 + sin 9π‘₯ βˆ’ 3 βˆ’ π‘₯ βˆ’ 5 𝑑π‘₯ 2

= [βˆ’ cos 𝑧 2

= 4π‘₯ βˆ’ πœ‹

1 = Κƒ[cos 4π‘₯ βˆ’ πœ‹ + cos(2π‘₯ βˆ’ 3πœ‹)]𝑑π‘₯ 2

3. Κƒ sin 9π‘₯ βˆ’ 3 cos π‘₯ + 5 𝑑π‘₯

𝑙𝑒𝑑 𝑧 = 5π‘₯ + 2 𝑑𝑧 =5 𝑑π‘₯ 𝑑𝑧 = 𝑑π‘₯ 5

𝑒 + 𝑣 = 3π‘₯ βˆ’ 2πœ‹ + π‘₯ + πœ‹

; 𝑙𝑒𝑑 𝑀 = 3π‘₯ βˆ’ 8 𝑑𝑀 =3 ; 𝑑π‘₯ 𝑑𝑀 ; = 𝑑π‘₯ 3

= 2 [βˆ’ 4 sin 4π‘₯ βˆ’ 2 sin 2π‘₯] + 𝐢 1

1

1

𝟏 𝟏 = βˆ’ 𝐬𝐒𝐧 πŸ’π’™ βˆ’ 𝐬𝐒𝐧 πŸπ’™ + π‘ͺ πŸ’ πŸ–

βˆ’ 3 π‘π‘œπ‘ π‘€] + 𝐢 1

𝟏 𝟏 𝒄𝒐𝒔 πŸ‘π’™ βˆ’ πŸ– + π‘ͺ 𝒄𝒐𝒔 πŸ“π’™ + 𝟐 βˆ’ 𝟏𝟎 πŸ”

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

13

EXERCISE 10.1

PRODUCT OF SINES AND COSINES

7. 4 𝑠𝑖𝑛 8π‘₯ π‘π‘œπ‘ 3π‘₯𝑑π‘₯

= 2Κƒ[sin 8π‘₯ + 3π‘₯ + 𝑠𝑖𝑛π‘₯ 8π‘₯ βˆ’ 3π‘₯ 𝑑π‘₯

9. 5 𝑠𝑖𝑛 4π‘₯ + 3 𝑠𝑖𝑛 2π‘₯ βˆ’ 6 𝑑π‘₯

5 (𝑒 + 𝑣)]𝑑π‘₯ = Κƒ[cos 𝑒 βˆ’ 𝑣 βˆ’ cos 2 πœ‹ 𝑙𝑒𝑑 𝑒 = 4π‘₯ + ; 3

= 2Κƒ[𝑠𝑖𝑛11π‘₯ + sin 5π‘₯]𝑑π‘₯

𝑙𝑒𝑑 𝑒 = 11π‘₯ ; 𝑙𝑒𝑑 𝑣 = 5π‘₯ 𝑑𝑒 = 11 ; 𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯ ; 11

𝑑𝑣 =5 𝑑π‘₯

𝑑𝑣 = 𝑑π‘₯ 5

= 2[βˆ’ 11 cos 11π‘₯ βˆ’ 5 cos 5π‘₯ ] + 𝐢 1

1

𝟐 𝟐 = βˆ’ 𝐜𝐨𝐬 πŸπŸπ’™ βˆ’ π’„π’π’”πŸ“π’™ + π‘ͺ πŸ“ 𝟏𝟏

πœ‹

πœ‹

ο‚·

𝑒 βˆ’ 𝑣 = 4π‘₯ +

πœ‹ 3

βˆ’ 2π‘₯ βˆ’

πœ‹ 6

ο‚·

𝑒 + 𝑣 = 4π‘₯ +

πœ‹ 3

+ 2π‘₯ βˆ’

πœ‹ 6

ο‚·

= 2π‘₯ + πœ‹/2 πœ‹ 𝑣 = 2π‘₯ βˆ’ 6 = 6π‘₯ + πœ‹/6

πœ‹ πœ‹ 5 βˆ’ π‘π‘œπ‘  6π‘₯ + = Κƒ[π‘π‘œπ‘  2π‘₯ + ]𝑑π‘₯ 2 2 6

π‘“π‘œπ‘Ÿ cos 2π‘₯ + 2 πœ‹

= βˆ’π‘ π‘–π‘›2π‘₯

= cos 2π‘₯π‘π‘œπ‘ 

ο‚·

π‘“π‘œπ‘Ÿ cos 6π‘₯ + 6 πœ‹

πœ‹ πœ‹ βˆ’ sin 2π‘₯ sin 2 2

πœ‹ πœ‹ βˆ’ 𝑠𝑖𝑛 6π‘₯ 𝑠𝑖𝑛 6 6 1 3 π‘π‘œπ‘  6π‘₯ βˆ’ 𝑠𝑖𝑛 6π‘₯ = 2 2 = π‘π‘œπ‘  6π‘₯π‘π‘œπ‘ 

=

3 5 1 Κƒ[βˆ’ 𝑠𝑖𝑛 2π‘₯ βˆ’ π‘π‘œπ‘  6π‘₯ + 𝑠𝑖𝑛 6π‘₯ ]𝑑π‘₯ 2 2 2

5 = 2 [2 π‘π‘œπ‘  2π‘₯ βˆ’

=

1

3

𝒄𝒐𝒔 πŸπ’™ βˆ’

12

πŸ“

πŸ’

𝑠𝑖𝑛 6π‘₯ βˆ’

πŸ“πŸ‘ πŸπŸ’

1 12

𝑠𝑖π‘₯ 6π‘₯ + 𝐢

π’”π’Šπ’ πŸ”π’™ βˆ’ 𝟏𝟐 π’”π’Šπ’ πŸ”π’™ + π‘ͺ πŸ“

DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy

14

EXERCISE 10.2

POWER OF SINES AND COSINES

1. 𝑠𝑖𝑛3 π‘₯π‘π‘œπ‘  4 π‘₯𝑑π‘₯; 𝑏𝑦 πΆπ‘Žπ‘ π‘’ 𝐼 = 𝑠𝑖𝑛4 π‘₯π‘π‘œπ‘  4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

= (1 βˆ’ π‘π‘œπ‘  2 π‘₯)2π‘π‘œπ‘ 4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

= (1 βˆ’ 2π‘π‘œπ‘  2 π‘₯ + π‘π‘œπ‘ 4 π‘₯)π‘π‘œπ‘ 4 π‘₯𝑠𝑖𝑛π‘₯𝑑π‘₯

= (π‘π‘œπ‘  4 π‘₯ βˆ’ 2π‘π‘œπ‘  6 π‘₯ + π‘π‘œπ‘ 8 π‘₯)𝑠𝑖𝑛π‘₯𝑑π‘₯ Let u = cosx

-𝑑𝑒 = 𝑠𝑖𝑛π‘₯𝑑π‘₯

= - (𝑒4 βˆ’ 2𝑒...


Similar Free PDFs