Full Physics Formula Sheet PDF

Title Full Physics Formula Sheet
Course Physics For Engineering 1
Institution Northeastern University
Pages 6
File Size 304.7 KB
File Type PDF
Total Downloads 82
Total Views 151

Summary

Full Physics Formula Sheet Constants: 𝑔 = 9 π‘š/𝑠 2 SI Units: meters ( length ), seconds ( time ), kilograms ( mass ), newtons ( force ), joules ( work and energy ), watts ( power ), π‘˜π‘” βˆ— π‘š 2 ( moment of inertia ), π‘˜π‘”/π‘š 3 ( density ), pascals ( pressure and strain/stress ) Vector Calculations: Vector ...


Description

Full Physics Formula Sheet Constants: 𝑔 = 9.81 π‘š/𝑠 2 SI Units: meters (length), seconds (time), kilograms (mass), newtons (force), joules (work and energy), watts (power), π‘˜π‘” βˆ— π‘š 2 (moment of inertia), π‘˜π‘”/π‘š 3 (density), pascals (pressure and strain/stress) Vector Calculations: Vector Components 𝐴

𝐴𝑦

𝐴𝑦 = 𝐴 sin πœƒ

tan πœƒ =

πœƒ

𝐴π‘₯ Vector Addition σ°‡οŒ± = π‘…σ°‡οŒ± 𝐴 + 𝐡

𝐴 = √(𝐴π‘₯ )2 + (𝐴𝑦 )

𝐴π‘₯ = 𝐴 cos πœƒ

𝑅 = (𝐴π‘₯ + 𝐡π‘₯ , 𝐴𝑦 + 𝐡𝑦 )

𝐴𝑦

𝐴π‘₯

𝑅π‘₯ = 𝐴π‘₯ + 𝐡π‘₯

2

𝑅 = √(𝑅π‘₯ )2 + (𝑅𝑦 )

𝑅𝑦 = 𝐴𝑦 + 𝐡𝑦

Vector Multiplication σ°‡οŒ± tail-to-tail πœ™ = the angle between 𝐴 and 𝐡 Scalar Dot Product 𝐴 βˆ— π΅σ°‡οŒ± = 𝐴𝐡 cos πœ™ = 𝐴π‘₯ 𝐡π‘₯ + 𝐴𝑦 𝐡𝑦 + 𝐴𝑧 𝐡𝑧 Vector Cross Product

π‘–ξžΈ σ°‡οŒ± = 𝐴𝐡 sin πœ™ = 𝐴π‘₯ 𝐴 Γ— 𝐡 𝐡π‘₯ Kinematics: Constant Acceleration 𝑣𝑓 = 𝑣𝑖 + π‘Žπ‘‘ Ξ”π‘₯ = 𝑣𝑖 𝑑 +

𝑣𝑓2

=

𝑣𝑖2 1

1

2

π‘Žπ‘‘ 2

+ 2π‘ŽΞ”π‘₯

Ξ”π‘₯ = (𝑣𝑖 + 𝑣𝑓 )𝑑 2

π‘—ξžΈ 𝐴𝑦 𝐡𝑦

π‘˜ο  𝐴𝑧 = π‘–ξžΈ(𝐴𝑦 𝐡𝑧 βˆ’ 𝐴𝑧 𝐡𝑦 ) + π‘—ξžΈ(𝐴𝑧 𝐡π‘₯ βˆ’ 𝐴π‘₯ 𝐡𝑧 ) + π‘˜ο  (𝐴π‘₯ 𝐡𝑦 βˆ’ 𝐴𝑦 𝐡π‘₯ ) 𝐡𝑧 𝑣𝑓

π‘Ž

𝑣𝑓

π‘Ž

𝑣𝑓

π‘Ž

Projectile Motion range =

2𝑣𝑖2 cos πœƒ sin πœƒ 𝑔

Circular Motion π‘Žπ‘Ÿπ‘Žπ‘‘ =

max height =

𝑑

𝑑 𝑑

Ξ”π‘₯

Ξ”π‘₯

2 𝑣𝑖,𝑦

2𝑔

𝑣2 𝑅

Relative Velocity π‘£οŒ±π΄/𝐢 = π‘£οŒ±π΄/𝐡 + π‘£οŒ±π΅/𝑐 Forces: Newtons Laws Σ𝐹 = 0 @ equilibrium with constant velocity

Σ𝐹 = π‘šπ‘ŽοŒ±

Ξ”π‘₯

total time =

2𝑣𝑖,𝑦 𝑔

Uniform Circular Motion 𝑣=

2πœ‹π‘… 𝑇

π‘Žπ‘Ÿπ‘Žπ‘‘ =

4πœ‹2 𝑅 𝑇2

2

𝐹𝐴 π‘œπ‘› 𝐡 = βˆ’πΉοŒ±π΅ π‘œπ‘› 𝐴 Specific Forces Weight = π‘šπ‘” Apparent weight: 𝑛 = π‘š(𝑔 + π‘Žπ‘¦ ) 2

π‘šπ‘£ πΉοŒ±π‘Ÿπ‘Žπ‘‘ = 𝑅 Friction Kinetic friction: π‘“π‘˜ = πœ‡π‘˜ 𝐹𝑁 Static friction: 𝑓𝑠 ≀ π‘“π‘ π‘šπ‘Žπ‘₯ = πœ‡π‘  𝐹𝑁 At critical angle, 𝑓𝑠 = π‘“π‘ π‘šπ‘Žπ‘₯ = πœ‡π‘  𝐹𝑁 In general, πœ‡π‘˜ ≀ πœ‡π‘  Work and Energy: Work π‘Š = 𝐹𝑠 π‘Š = 𝐹 βˆ— π‘ οŒ± = 𝐹𝑠 cos πœ™ π‘Šπ‘‘π‘œπ‘‘π‘Žπ‘™ = π‘Šπ‘›π‘’π‘‘ = πΉοŒ±π‘›π‘’π‘‘ βˆ— π‘ οŒ± = Σ𝐹 βˆ— π‘ οŒ± Work with Varying Forces Ξ”π‘Š = 𝐹 βˆ— Ξ”π‘₯ π‘₯ π‘Š = ∫π‘₯ 2 𝐹π‘₯ 𝑑π‘₯ 1

Kinetic Energy 1

𝐾𝐸 = 2 π‘šπ‘£ 2

𝐾𝐸 is never negative, only zero at rest, and doesn’t depend on direction Work-Energy Theorem 1

1

π‘Šπ‘‘π‘œπ‘‘π‘Žπ‘™ = Δ𝐾𝐸 = 2 π‘šπ‘£π‘“2 βˆ’ 2 π‘šπ‘£π‘–2 If π‘Šπ‘‘π‘œπ‘‘π‘Žπ‘™ > 0, the object speeds up If π‘Šπ‘‘π‘œπ‘‘π‘Žπ‘™ < 0, the object slows down If π‘Šπ‘‘π‘œπ‘‘π‘Žπ‘™ = 0, the object remains at a constant speed Power π‘ƒπ‘Žπ‘£π‘’ =

Ξ”π‘Š Δ𝑑

π‘‘π‘Š

π‘ƒπ‘–π‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘›π‘’π‘œπ‘’π‘  = 𝑑𝑑 𝑃 = 𝐹 βˆ— π‘£οŒ± Conservation of Energy: Potential Energy π‘ˆπ‘”π‘Ÿπ‘Žπ‘£ = π‘šπ‘”π‘¦ Ξ”π‘ˆ = π‘ˆ2 βˆ’ π‘ˆ1 = π‘šπ‘”(𝑦2 βˆ’ 𝑦1 ) π‘Šπ‘”π‘Ÿπ‘Žπ‘£ = π‘šπ‘”(𝑦1 βˆ’ 𝑦2 ) Ξ”π‘ˆπ‘”π‘Ÿπ‘Žπ‘£ = βˆ’π‘Šπ‘”π‘Ÿπ‘Žπ‘£ = π‘Šπ‘’π‘₯π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘™ Conservation of Mechanical Energy 𝐾1 + π‘ˆπ‘”π‘Ÿπ‘Žπ‘£,1 = 𝐾2 + π‘ˆπ‘”π‘Ÿπ‘Žπ‘£,2 πΈπ‘šπ‘’π‘β„Ž = 𝐾 + π‘ˆ Δ𝐾 + Ξ”π‘ˆ = 0 π‘ˆ = π‘ˆπ‘”π‘Ÿπ‘Žπ‘£ + π‘ˆπ‘’π‘™

Nonconservative Forces Conservative forces depend only on the endpoints Nonconservative forces depend on the path If friction is involved, Δ𝐾 + Ξ”π‘ˆ β‰  0 Nonconservative forces change the interna energy of a system Δ𝐾 + Ξ”π‘ˆ + Ξ”π‘ˆπ‘–π‘›π‘‘ = 0 π‘Šπ‘πΆ = Δ𝐾𝐸 + Δ𝑃𝐸 Springs: π‘₯ π‘₯ is the distance the spring is stretched If π‘₯ > 0, the spring is stretched If π‘₯ < 0, the spring is compressed Force 𝐹𝑒π‘₯𝑑 = π‘˜π‘₯ πΉπ‘ π‘π‘Ÿπ‘–π‘›π‘” = βˆ’π‘˜π‘₯ Work 1

π‘Šπ‘’π‘₯𝑑 = 2 π‘˜π‘₯ 2

π‘Šπ‘ π‘π‘Ÿπ‘–π‘›π‘” = βˆ’

Elastic Potential Energy

1

2

π‘˜π‘₯ 2

1

π‘ˆπ‘’π‘™ = 2 π‘˜π‘₯ 2

Momentum: Momentum π‘οŒ± = π‘šπ‘£οŒ± π‘‘π‘οŒ± Σ𝐹 = 𝑑𝑑

Impulse 𝐽 = Σ𝐹 (𝑑2 βˆ’ 𝑑1 ) = Σ𝐹 Δ𝑑 𝑑 𝐽 = ∫ 2 Σ𝐹 𝑑𝑑 𝑑1

Impulse-Momentum Theorem 𝐽 = Ξ”π‘οŒ± Types of Collisions If Ξ£πΉοŒ±π‘’π‘₯𝑑 = 0, momentum is conserved and total momentum is constant. Elastic collision: the total kinetic energy is conserved (often when objects bounce off each other) π‘š1 π‘£οŒ±1𝑖 + π‘š2 π‘£οŒ±2𝑖 = π‘š1 π‘£οŒ±1𝑓 + π‘š2 π‘£οŒ±2𝑓 1

1

1

1

2 2 π‘š1 π‘£οŒ±1𝑖2 + 2 π‘š2 π‘£οŒ±2𝑖 + 2 π‘š2 π‘£οŒ±22𝑓 = 2 π‘š1 π‘£οŒ±1𝑓 Inelastic collision: the total kinetic energy after the collision is less than before the collision π‘š1 π‘£οŒ±1𝑖 + π‘š2 π‘£οŒ±2𝑖 = π‘š1 π‘£οŒ±1𝑓 + π‘š2 π‘£οŒ±2𝑓 Completely inelastic collision: objects stick together π‘š1 π‘£οŒ±1𝑖 + π‘š2 π‘£οŒ±2𝑖 = (π‘š1 + π‘š2 )π‘£οŒ±π‘“ Center of Mass

2

π‘ŸοŒ±π‘π‘š =

Ξ£π‘šπ‘– π‘Ÿ οŒ±π‘– Ξ£π‘šπ‘–

π‘€π‘£οŒ±π‘π‘š = π‘ƒσ°‡οŒ± where 𝑀 is total mass and π‘ƒσ°‡οŒ± is total momentum of the system Rotations of Rigid Bodies: Angles

180Β°

π‘Ÿπ‘Žπ‘‘ βˆ— πœ‹ = π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘  1 π‘Ÿπ‘’π‘£ = 2πœ‹ π‘Ÿπ‘Žπ‘‘ Straight Line Motion π‘Ž = constant 𝑣𝑓 = 𝑣𝑖 + π‘Žπ‘‘ 1 Ξ”π‘₯ = 𝑣𝑖 𝑑 + 2 π‘Žπ‘‘ 2 𝑣𝑓2 = 𝑣𝑖2 + 2π‘ŽΞ”π‘₯ Ξ”π‘₯ =

1 2

(𝑣𝑖 + 𝑣𝑓 )𝑑

Translational 𝑠 = π‘Ÿπœƒ Δ𝑠 = π‘ŸΞ”πœƒ 𝑣 = π‘Ÿπœ” π‘Žπ‘‘π‘Žπ‘› = π‘Ÿπ›Ό π‘Žπ‘Ÿπ‘Žπ‘‘ = 1

𝑣2 π‘Ÿ

= πœ”2 π‘Ÿ

𝐾 = 2 π‘šπ‘£ 2

Moment of Inertia 𝐼 = Ξ£π‘šπ‘– π‘Ÿπ‘–2 = ∫ π‘Ÿ 2 π‘‘π‘š 𝐼𝑝 = πΌπ‘π‘š + 𝑀𝑑 2 𝐼 = ∫ π‘Ÿ 2 πœŒπ‘‘π‘‰ Moment of Inertia of Common Objects

Dynamics of Rotations: Torque Angular Momentum

Fixed Axis Rotation 𝛼 = constant πœ”π‘“ = πœ”π‘– + 𝛼𝑑 1 Ξ”πœƒ = πœ”π‘– 𝑑 + 2 𝛼𝑑 2 πœ”π‘“2 = πœ”2𝑖 + 2𝛼Δθ 1

Ξ”πœƒ = 2 (πœ”π‘– + πœ”π‘“ )𝑑 Angular πœƒ Ξ”πœƒ π‘‘πœƒ πœ” = 𝑑𝑑 𝛼=

π‘‘πœ” 𝑑𝑑

1

1

𝐾 = πΌπœ”2 = Ξ£ π‘šπ‘– 𝑣𝑖2 2 2

Static Equilibrium: Σ𝐹 = 0 Σ𝜏 = 0 Strain and Stress: Strain, Stress, Elasticity Stress: the force per area that you apply on the object Strain: the fractional change in the size of the object A deformation is elastic if the object returns to its original shape after the force is removed Tensile Stress and Strain Stress due to force applied perpendicular to the object’s surface Tensile stress =

𝐹βŠ₯ 𝐴

Compressive stress =

𝐹βŠ₯ 𝐴

Young’s Modulus = π‘Œ =

Δ𝑙 𝑙0

Tensile strain =

Compressive strain =

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 π‘ π‘‘π‘Ÿπ‘’π‘ π‘ 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›

=

𝐹βŠ₯ /𝐴 Δ𝑙/𝑙0

=

𝐹βŠ₯ 𝐴

𝑙

βˆ— Δ𝑙0

Δ𝑙 𝑙0

Bulk Stress and Strain Stress due to force applied to all sides of the object pushing inwards Pressure = 𝑝 =

𝐹βŠ₯ 𝐴

Bulk stress = Δ𝑝

Bulk strain =

Bulk Modulus = 𝐡 = βˆ’Ξ”π‘/(Δ𝑉/𝑉0 )

Δ𝑉 𝑉0

Sheer Stress and Strain Stress due to force applied parallel to the object’s surface Sheer stress =

𝐹βˆ₯ 𝐴

Sheer strain =

Sheer Modulus = 𝑆 = (𝐹βˆ₯ /𝐴)(β„Ž/π‘₯)

π‘₯

β„Ž

Compressibility Compressibility, π‘˜, is the reciprocal of the bulk modulus 1

π‘˜=𝐡=βˆ’

Δ𝑉/𝑉0 Δ𝑝

1

=βˆ’π‘‰ βˆ— 0

Δ𝑉

Δ𝑝

Fluid Mechanics: Density Density of a homogeneous material = 𝜌 = Pressure

π‘š

𝑉

𝑑𝐹

Pressure at a point in a fluid = 𝑝 = 𝑑𝐴βŠ₯ Pressure at depth, β„Ž, compared to the surface pressure, 𝑝0 𝑝 = 𝑝0 + πœŒπ‘”β„Ž Pascal’s law: pressure applied to an enclosed fluid 𝐹 𝐹 𝑝= 1= 2 𝐴1

𝐴2

Types of Pressure Gauge pressure: the excess pressure above atmospheric pressure Absolute pressure: total pressure...


Similar Free PDFs