Implicit Function Theorem PDF

Title Implicit Function Theorem
Author yashveer rana
Course Development Economics-II
Institution University of Delhi
Pages 25
File Size 421.2 KB
File Type PDF
Total Downloads 38
Total Views 144

Summary

Download Implicit Function Theorem PDF


Description

THE IMPLICIT FUNCTION THEOREM

1. A SIMPLE VERSION OF THE IMPLICIT FUN CTION THEOREM 1.1. Statement of the theorem. Theorem 1 (Simple Implicit Function Theorem). Suppose that φ is areal-valued functions defined on a  domain D and continuously differentiable on an open set D1 ⊂ D ⊂ Rn , x10, x 02 , . . . , xn0 ∈ D1 , and   φ x 01 , x20, . . . , xn0 = 0

Further suppose that

(1)

∂φ( x 01 , x20, . . . , xn0 ) 6= 0 ∂x1

(2)

Then there exists a neighborhood Vδ ( x20, x30, . . . , xn0 ) ⊂ D1 , an open set W ⊂ R1 containing x10 and a real valued function ψ1 : V → W, continuously differentiable on V, such that   x10 = ψ1 x20, x30, . . . , xn0   φ ψ1 ( x20, x30, . . . , xn0 ), x20, x 03 , . . . , xn0 ≡ 0

(3)

Furthermore for k = 2, . . . , n,

∂ψ1 ( x20, x 03 , . . . , xn0 ) = − ∂x k

∂φ (ψ1 ( x20, x 03 , ..., x 0n ),x20, x 03 , ..., x 0n ) ∂x k ∂φ (ψ1 ( x20, x 03 , ..., x 0n ),x20, x 03 , ..., x 0n ) ∂x1

= −

∂φ ( x 0 ) ∂x k ∂φ ( x 0 ) ∂x1

(4)

We can prove this last statement as follows. Define g:V → Rn as  ψ1 ( x20, . . . , xn0 )   x20     0   0 0 0 x  3 g x 2 , x3 , . . . , xn =    . ..   0 xn 

Then (φ ◦ g )(x20, . . . , xn0 ) ≡ 0 for all ( x 02 , . . . , xn0) ∈ V. Thus by the chain rule Date: February 19, 2008. 1

(5)

2

THE IMPLICIT FUNCTION THEOREM

  D (φ ◦ g )(x20, . . . , xn0) = D φ g ( x20, . . . , xn0 ) D g ( x20, . . . xn0 ) = 0   = D φ x 01 , x20 , . . . , xn0 D g ( x20, . . . xn0 ) = 0

 0   ψ1 ( x20, . . . , xn0 ) x1 0 0  x   x2   20  0  x   x = D φ  3 D   =0 3   .  . ..   ..   xn0 xn0  ∂ψ ∂ψ ∂ψ  1 1 . . . ∂xn1 ∂x2 ∂x3  0 ... 0  i 1  h  ∂φ  ∂φ ∂φ 1 ... 0  ⇒ ∂x , ∂x , . . . , ∂xn  0  = 0 0 ... 2 1   . ..  .. ...  . ... 0 0 ... 1

(6)

0



For any k = 2, 3, . . . , n, we then have

∂φ ( x 01 , x 02 , . . . , xn0) ∂ψ1 ( x 02 , . . . , xn0) ∂x1

∂x k

+

∂φ ( x10, x 02 , . . . , xn0) ∂x k

=0

∂φ ( x10,x 02 ,...,xn0) (7) ∂ψ1 ( x 02 , . . . , xn0) ∂x k ⇒ = − ∂φ ( x10,x 02 ,...,xn0) ∂x k ∂x1   We can, of course, solve for any other x k = ψk x 01 , x20, . . . , xk0−1 , xk0+1 , . . . , x 0n , as a function of   the other x’s rather than x1 as a function of x20, x 03 . . . , xn0 .

1.2. Examples.

1.2.1. Production function. Consider a production function given by y = f ( x1 , x2 . . . , x n )

(8)

φ ( x1 , x2 , . . . , x n , y ) = f ( x1 , x2 . . . , x n ) − y = 0

(9)

Write this equation implicitly as

where φ is now a function of n+1 variables instead of n variables. Assume that φ is continuously differentiable and the Jacobian matrix has rank 1. i.e., ∂φ ∂f 6= 0, = ∂x j ∂x j

j = 1, 2, . . . , n

(10)

Given that the implicit function theorem holds, we can solve equation 9 for x k as a function of y and the other x’s i.e. xk∗ = ψk ( x1 , x2 , . . . , x k−1 , x k+1 , . . . , y ) Thus it will be true that

(11)

THE IMPLICIT FUNCTION THEOREM

3

φ (y, x1 , x2 , . . . , x k−1 , xk∗, x k+1 , . . . , x n ) ≡ 0

(12)

y ≡ f ( x1 , x2 , . . . , x k−1 , xk∗, x k+1 , . . . , x n )

(13)

or that

Differentiating the identity in equation 13 with respect to x j will give 0 =

∂f ∂ f ∂x k + ∂x j ∂x k ∂x j

(14)

or ∂f

− ∂x ∂x k j = RTS = MRS = ∂f ∂x j

(15)

∂x k

Or we can obtain this directly as ∂φ (y, x1 , x2 , . . . , x k−1 , ψk , x k+1 , . . . , x n ) ∂ψk −∂φ (y, x1 , x2 , . . . , x k−1 , ψk , x k+1 , . . . , x n ) = ∂x j ∂x j ∂x k



∂φ ∂x k ∂φ = − ∂x k ∂x j ∂x j

(16)

∂f



− ∂x ∂x k = ∂ f j = MRS ∂x j ∂x k

Consider the specific example y 0 = f ( x1 , x2 ) = x12 − 2x1 x2 + x1 x 32 To find the partial derivative of x2 with respect to x1 we find the two partials of f as follows ∂x2 = − ∂x1

= − =

∂f ∂x1 ∂f ∂x2

2 x1 − 2 x2 + x23 3 x1 x 22 − 2 x1

2 x2 − 2 x1 − x23 3 x1 x22 − 2 x1

1.2.2. Utility function. u 0 = u ( x1 , x2 ) To find the partial derivative of x2 with respect to x1 we find the two partials of U as follows ∂x2 = − ∂x1

∂u ∂x1 ∂u ∂x2

4

THE IMPLICIT FUNCTION THEOREM

1.2.3. Another utility function. Consider a utility function given by 1

1

1

u = x14 x23 x 63 This can be written implicitly as 1

1

1

f (u, x1 , x2 , x3 ) = u − x 14 x23 x 36 = 0 Now consider some of the partial derivatives arising from this implicit function. First consider the marginal rate of substitution of x1 for x2 ∂ x1 = ∂ x2

−∂ f ∂ x2 ∂f ∂ x1 −32

1

=

− ( − 13 ) x14 x2

1

x36

−3

1

1

1

1

− 56

(− 41 ) x1 4 x 23 x36 4 x1 = − 3 x2 Now consider the marginal rate of substitution of x2 for x3 ∂ x2 = ∂ x3

=

−∂ f ∂ x3 ∂f ∂ x2

− ( − 16 ) x14 x23 x 3 − 32

1

(− 31 ) x 14 x 2 1 x2 = − 2 x3 Now consider the marginal utility of x2 ∂u = ∂ x2

1

x36

−∂ f ∂ x2 ∂f ∂u 1

− 32

− ( − 31 ) x 14 x2 = 1 1 14 − 32 16 = x 1 x2 x3 3

1

x 63

2. T HE GEN ERAL IMPLICIT FUN CTION THEOREM WITH P IN DEPEN DEN T VARIABLES AN D M IMPLICIT EQUATION S

2.1. Motivation for implicit function theorem. We are often interested in solving implicit systems of equations for m variables, from the set of variables x1 , x2 , . . . , x m , xm +1 . . . , x m + p in terms of p of the variables where there are a minimum of m equations in the system. We typically label the variables x m +1 , xm +2 , . . . , x m + p as y1 , y2 , . . . , y p . We are frequently interested in the derivatives ∂x i ∂x where it is implicit that all other x k and all yℓ are held constant. The conditions guaranteeing j

THE IMPLICIT FUNCTION THEOREM

5

that we can solve for m of the variables in terms of p variables along with a formula for computing derivatives are given by the implicit function theorem. One motivation for the implicit function theorem is that we can eliminate m variables from a constrained optimization problem using the constraint equations. In this way the constrained problem is converted to an unconstrained problem and we can use the results on unconstrained problems to determine a solution. 2.2. Description of a system of equations. Suppose that we have m equations depending on m + p variables (parameters) written in implicit form as follows φ1 ( x 1 , x 2 , · · · , x m , y 1 , y 2 , · · · , y p )

= 0

φ2 ( x 1 , x 2 , · · · , x m , y 1 , y 2 , · · · , y p )

= 0

.. .

...

= 0

φm ( x 1 , x 2 , · · · , x m , y 1 , y 2 , · · · , y p ) For example with m = 2 and p = 3, we might have

(17)

= 0

φ1 ( x1 , x2 , p, w1 , w2 ) = (0.4 ) p x1−0.6 x20.2 − w1 = 0 − 0.8 φ2 ( x1 , x2 , p, w1 , w2 ) = (0.2 ) p x0.4 − w2 = 0 1 x2 where p, w1 and w2 are the ”independent” variables y1 , y2 , and y3 .

(18)

2.3. Jacobian matrix of the system. The Jacobian matrix of the system in 17 is defined as matrix of first partials as follows   ∂φ ∂φ ∂ φ1 1 · · · ∂ xm1 ∂ x ∂ x  ∂ φ21 ∂ φ22 ∂ φ2     ∂ x1 ∂ x2 · · · ∂ x m  (19) J =  .  . . .  .. .. .. .  .   ∂ φm ∂ φm ∂φ · · · ∂ xmm ∂ x1 ∂x 2

This matrix will be of rank m if its determinant is not zero.

2.4. Statement of implicit function theorem. Theorem 2 (Implicit Function Theorem). Suppose that φi are real-valued functions defined on a domain D and continuously differentiable on an open set D1 ⊂ D ⊂ Rm + p , where p > 0 and 0 φ1 ( x10, x20, . . . , xm , y 01 , y20, . . . , y 0p ) = 0 0 φ2 ( x10, x20, . . . , xm , y 01 , y20, . . . , y 0p ) = 0

.. . =0

(20)

0 φm ( x10, x20, . . . , xm , y 01 , y20, . . . , y 0p ) = 0

(x0 , y 0 ) ∈ D1 . We often write equation 20 as follows φi ( x 0 , y 0 ) = 0,

i = 1, 2, . . . , m, and ( x 0 , y 0 ) ∈ D1 .

(21)

6

THE IMPLICIT FUNCTION THEOREM

Assume the Jacobian matrix

∂φ i ( x 0 , y 0 ) has rank m. Then there exists a neighborhood Nδ (x0 , y0 ) ⊂ D1 , ∂x j y0 and real valued functions ψk , k = 1, 2, . . . , m, continuously differentiable

i

h

an open set D2 ⊂ R p containing on D2 , such that the following conditions are satisfied:

x 01 = ψ1 (y 0 ) x 02 = ψ2 (y 0 ) (22)

.. . 0 xm = ψm ( y 0 )

For every y ∈ D2 , we have φi (ψ1 (y ), ψ2 (y ), . . . , ψm (y ), y 1 , y 2 , . . . , y p ) ≡ 0,

i = 1, 2, . . . , m.

or

(23)

φi (ψ(y ), y ) ≡ 0,

i = 1, 2, . . . , m.

We also have that for all (x,y) ∈ Nδ (x0 , y0 ), the Jacobian matrix y∈

D2 ,

h

i

∂φ i ( x , y ) ∂x j

has rank m. Furthermore for

the partial derivatives of ψ(y ) are the solutions of the set of linear equations m

∂φ1 (ψ(y ), y ) ∂ψk (y ) −∂φ1 (ψ(y ), y ) = ∂y j ∂y j ∂x k

∑ k= 1 m

−∂φ2 (ψ(y ), y ) ∂φ2 (ψ(y ), y ) ∂ψk (y ) = ∂y j ∂y j ∂x k

∑ k= 1

(24)

.. . m

∑ k= 1

∂φm (ψ(y ), y ) ∂ψk (y ) −∂φm (ψ(y ), y ) = ∂y j ∂y j ∂x k

We can write equation 24 in the following alternative manner m

∂φi (ψ(y ), y ) ∂ψk (y ) −∂φi (ψ(y ), y ) = ∂y j ∂y j ∂x k k= 1



i = 1, 2, . . . , m

(25)

or perhaps most usefully as the following matrix equation 

∂ φ1 ∂ x1 ∂ φ2 ∂ x1

    .  .. 

∂ φm ∂ x1

This of course implies

∂ φ1 ∂ x2 ∂ φ2 ∂ x2

.. .

∂ φm ∂ x2

··· ··· ... ···

 

∂ φ1 ∂ xm  ∂ φ2  ∂ xm 

     ..   .    ∂φ m

∂ xm

∂ψ1 (y ) ∂y j  ∂ψ2 (y )  ∂y j  



.. .

∂ψm (y ) ∂y j



    =      

− ∂φ1 (ψ (y ),y ) ∂y j  − ∂φ2 (ψ (y ),y )  ∂y j 



.. .

  

− ∂φ m (ψ (y ),y ) ∂y j

(26)

THE IMPLICIT FUNCTION THEOREM

1 (y ) ∂y j  ∂ψ2 (y )  ∂y j  

 ∂ψ       



∂ φ1 ∂ x2 ∂ φ2 ∂ x2

 ∂ φ1  ∂∂ φx21   ∂ x1  . = −   .   . 

.. .

...

∂ φm ∂ x2

∂ φm ∂ x1

∂ψm (y ) ∂y j

7



 ∂ φ 1 −1 ∂φ1 (ψ (y ),y ) ∂y j ∂ xm     ∂φ2 (ψ (y ),y )  ∂ φ2    ∂y ∂ xm  j  

··· ··· ... ···

 ...  

∂ φm ∂ xm

  



.. .

(27)

  

∂φ m (ψ (y ), y ) ∂y j

We can expand equation 27 to cover the derivatives with respect to the other yℓ by expanding the matrix equation 1 (y) ∂y  ∂ψ (1y )  2  ∂y1

 ∂ψ    

∂ψ1 ( y ) ∂y2 ∂ψ2 ( y ) ∂y2

. ..

. ..

∂ψ m ( y ) ∂y1

∂ψ m ( y ) ∂y2

... ... . .. ...

∂ψ1 ( y ) ∂y p ∂ψ2 ( y ) ∂y p



∂ φ1 ∂x  ∂ φ21 ∂x  1



   = −   ..   . 

. ..

∂ φm ∂ x1

∂ψ m ( y ) ∂y p

∂ φ1 ∂ x2 ∂ φ2 ∂ x2

. . .

∂ φm ∂ x2

··· ··· . . . ···

∂ φ1 ∂ xm ∂ φ2 ∂ xm

. . . ∂ φm ∂ xm

∂φ 1 ( ψ ( y ),y ) ∂y  ∂φ ( ψ (1y ),y )  2 ∂y1 

−1       

∂φ 1 ( ψ ( y ),y ) ∂y2 ∂φ 2 ( ψ ( y ),y ) ∂y2

. ..

. ..

∂φ m ( ψ ( y ),y ) ∂y1

∂φ m ( ψ ( y ),y ) ∂y2

   

... ... . .. ...

∂φ 1 ( ψ ( y ),y )  ∂y p ∂φ 2 ( ψ ( y ),y )   ∂y p 

. ..

∂φ m ( ψ ( y ),y ) ∂y p

   

(28)

2.5. Some intuition for derivatives computed using the implicit function theorem. To see the intuition of equation 24, take the total derivative of φi in equation 23 with respect to y j as follows φ i ( ψ1 ( y ) , ψ2 ( y ) , · · · , ψ m ( y ) , y ) = 0 ∂ φ i ∂ ψ1 ∂ φi ∂ φ i ∂ ψm ∂ φ i ∂ ψ2 + + ··· + + = 0 ∂ yj ∂ ψm ∂ y j ∂ ψ2 ∂ y j ∂ ψ1 ∂ y j and then move

∂ φi ∂ yj

(29)

to the right hand side of the equation. Then perform a similar task for the

∂x other equations to obtain m equations in the m partial derivatives, ∂ y ji =

∂ ψi ∂ yj

For the case of only one implicit equation 24 reduces to m

∑ k= 1

∂φ (ψ(y ), y ) ∂ψk (y ) ∂φ (ψ(y ), y ) = − ∂y j ∂y j ∂x k

(30)

If there is only one equation, we can solve for only one of the x variables in terms of the other x variables and the p y variables and obtain only one implicit derivative. ∂φ (ψ(y ), y ) ∂ψk (y ) ∂φ (ψ(y ), y ) = − ∂y j ∂y j ∂x k

(31)

which can be rewritten as ∂φ (ψ (y ), y )

− ∂y j ∂ψk (y ) = ∂φ(ψ (y ), y ) ∂y j ∂x k

This is more or less the same as equation 4. If there are only two variables, x1 and x2 where x2 is now like y1 , we obtain

(32)

8

THE IMPLICIT FUNCTION THEOREM

∂φ (ψ1 ( x2 ), x2 ) ∂φ (ψ1 ( x2 ), x2 ) ∂ψ1 ( x2 ) = − ∂x2 ∂x2 ∂x1 ∂φ (ψ ( x ),x )

1 2 2 − ∂ψ1 ( x2 ) ∂x1 2 = ∂φ(ψ (∂x = ⇒ 1 x2 ),x2 ) ∂x2 ∂x2

(33)

∂x1

which is like the example in section 1.2.1 where φ takes the place of f. 2.6. Examples. 2.6.1. One implicit equation with three variables. φ ( x 01 , x20, y 0 ) = 0

(34)

The implicit function theorem says that we can solve equation 34 for x10 as a function of x20 and y0 , i.e., x10 = ψ1 ( x 02 , y 0 )

(35)

φ ( ψ1 ( x 2 , y ) , x 2 , y ) = 0

(36)

and that

The theorem then says that ∂φ (ψ1 ( x2 , y ), x2 , y ) ∂ψ1 −∂φ (ψ1 ( x2 , y ), x2 , y ) = ∂x2 ∂x2 ∂x1



∂φ (ψ1 ( x2 , y ), x2 , y ) ∂φ (ψ1 ( x2 , y ), x2 , y ) ∂x1 ( x2 , y ) = − ∂x2 ∂x2 ∂x1

(37)

∂φ (ψ ( x , y ), x , y )

1 2 2 − ∂x1 ( x2 , y ) 2 = ∂φ(ψ ( x ∂x 1 2 , y ) , x 2, y ) ∂x2



∂x1

2.6.2. Production function example. φ ( x 01 , x 02 , y 0 ) = 0 y 0 − f ( x 01 , x20) = 0

(38)

The theorem says that we can solve the equation for x10. x10 = ψ1 ( x 02 , y 0 )

(39)

It is also true that φ ( ψ1 ( x 2 , y ) , x 2 , y ) = 0 y − f ( ψ1 ( x 2 , y ) , x 2 ) = 0 Now compute the relevant derivatives

(40)

THE IMPLICIT FUNCTION THEOREM

9

∂φ (ψ1 ( x2 , y ), x2 , y ) ∂ f ( ψ1 ( x 2 , y ) , x 2 ) = − ∂x1 ∂x1 ∂φ (ψ1 ( x2 , y ), x2 , y ) ∂ f ( ψ1 ( x 2 , y ) , x 2 ) = − ∂x2 ∂x2 The theorem then says that   ∂φ (ψ1 ( x2 , y ), x2, y ) ∂x1 ( x2 , y ) ∂x = −  ∂φ(ψ ( x , y2), x , y )  1 2 2 ∂x2

(41)

∂x1



= − = −





∂ f (ψ1 ( x2 , y ),x2) ∂x2 ∂ f (ψ1 ( x2 , y ),x2 ) ∂x1

∂ f (ψ1 ( x2 , y ),x2 ) ∂x2 ∂ f (ψ1 ( x2 , y ),x2 ) ∂x1

 

(42)

2.7. General example with two equations and three variables. Consider the following system of equations φ1 ( x1 , x2 , y ) = 3 x1 + 2 x2 + 4y = 0 φ2 ( x1 , x2 , y ) = 4x1 + x2 + y = 0

(43)

The Jacobian is given by " ∂φ

1

∂x1 ∂φ2 ∂x1

∂φ1 ∂x2 ∂φ2 ∂x2

#

=



3 2 4 1



(44)

We can solve system 43 for x1 and x2 as functions of y. Move y to the right hand side in each equation. 3 x1 + 2 x2 = −4y

(45a)

4x1 + x2 = −y

(45b)

Now solve equation 45b for x2 x2 = −y − 4x1 Substitute the solution to equation 46 into equation 45a and simplify

(46)

3 x1 + 2(−y − 4 x1 ) = −4y

⇒ 3x1 − 2y − 8x1 = −4y ⇒ −5x1 = −2y 2 y = ψ1 ( y ) 5 Substitute the solution to equation 47 into equation 46 and simplify

⇒ x1 =

(47)

10

THE IMPLICIT FUNCTION THEOREM

x 2 = −y − 4



2 y 5



⇒ x2 = −

5 8 y − y 5 5

(48)

13 y = ψ2 ( y ) 5 If we substitute these expressions for x1 and x2 into equation 43 we obtain       13 13 2 2 y, y = 3 y + 4y y + 2 − y , − φ1 5 5 5 5

= −

20 26 6 = y − y y + 5 5 5 20 20 = − y = 0 y + 5 5

(49)

and φ2



2 13 y , − y, y 5 5



=4



2 y 5



  13 + − y + y 5

8 5 13 y + y y − 5 5 5 13 13 y = 0 = y − 5 5

=

(50)

Furthermore ∂ψ1 2 = 5 ∂y 13 ∂ψ2 = − 5 ∂y We can solve for these partial derivatives using equation 24 as follows

(51)

−∂φ1 ∂φ1 ∂ψ2 ∂φ1 ∂ψ1 = + ∂y ∂x1 ∂y ∂x2 ∂y

(52a)

∂φ2 ∂ψ1 −∂φ2 ∂φ2 ∂ψ2 = + ∂y ∂x1 ∂y ∂x2 ∂y

(52b)

Now substitute in the derivatives of φ1 and φ2 with respect to x1 , x2 , and y.

Solve equation 53b for

∂ψ2 ∂y

3

∂ψ1 ∂ψ + 2 2 = −4 ∂y ∂y

(53a)

4

∂ψ ∂ψ1 + 1 2 = −1 ∂y ∂y

(53b)

THE IMPLICIT FUNCTION THEOREM

11

∂ψ2 ∂ψ = −1 − 4 1 ∂y ∂y

(54)

Now substitute the answer from equation 54 into equation 53a 3

∂ψ1 + 2 ∂y

⇒ 3



−1 − 4

∂ψ1 ∂y



= −4

∂ψ ∂ψ1 − 2 − 8 1 = −4 ∂y ∂y

⇒ −5 ⇒

(55)

∂ψ1 = −2 ∂y 2 ∂ψ1 = ∂y 5

If we substitute equation 55 into equation 54 we obtain ∂ψ2 ∂ψ = −1 − 4 1 ∂y ∂y   ∂ψ2 2 ⇒ = −1 − 4 ∂y 5

(56)

−5 13 8 = − − 5 5 5 We could also do this by inverting the matrix. =

2.7.1. Profit maximization example 1. Consider the system in equation 18. We can solve this system of m implicit equations for all m of the x variables as functions of the p independent (y) variables. Specifically, we can solve the two equations for x1 and x2 as functions of p, w1, and  w2 , i.e., x1 ∂ ψi ∂ x1 ∂ x2 = ψ1 (p, w1 , w2 ) and x2 = ψ2 (p, w1 , w2 ). We can also find ∂ p and ∂ p , that is ∂ p , from the following two equations derived from equation 18 which is repeated here.

φ1 ( x1 , x2 , p, w1 , w2 ) = (0.4 ) p x1−0.6 x20.2 − w1 = 0 − 0.8 φ2 ( x1 , x2 , p, w1 , w2 ) = (0.2 ) p x0.4 − w2 = 0 1 x2

i i ∂x h 1 0.6 x − 0.8 + ( 0.08 ) p x− 2 1 ∂p h h i i −0.6 x −0.8 ∂ x1 + ( − 0.16 ) p x0.4 − 1.8 x2 ( 0.08 ) p x1 1 2 ∂p h

(− 0.24 ) p x1−1.6x20.2

∂ x2 = − (0.4 ) x1−0.6 x 0.2 2 ∂p ∂ x2 = − (0.2 ) x10.4 x2− 0.8 ∂p

(57)

We can write this in matrix fo...


Similar Free PDFs