Inter 1st Year Maths IA-Compound Angles Study Material PDF

Title Inter 1st Year Maths IA-Compound Angles Study Material
Author vasu ms
Course Mathematics
Institution Sikkim Manipal University
Pages 19
File Size 436.2 KB
File Type PDF
Total Downloads 36
Total Views 134

Summary

IMP...


Description

COMPOUND ANGLES Definitions and Formulae : 1.

The algebraic sum of two or more angles is called a compound a compound angle. i.e. A + B, A – B, A + B + C, A + B – C, A – B + C, B + C – A, ……. etc. are called compound angles.

2.

If A and B are any two angles then i) Sin(A + B) = sin A cos B + cos A sin B. ii) Sin(A – B) = sin A cos B – cos A sin B iii) cos(A + B) = cos A cos B – sin A sin B iv) cos(A – B) = cos A cos B + sin A sin B.

3.

If A, B, A + B, A – B are not odd multiples of

i) tan(A + B) =

ii) tan(A – B) =

4.

tan A + tan B . 1 − tan A tan B tan A − tan B . 1 + tan A tan B

If A, B, A + B and A – B are not integral multiples of

i) cot(A + B) =

ii) cot(A – B) =

5.

π/2 then

cot A cot B − 1 cot B + cot A cot A cot B + 1 . cot B − cot A

i) sin(A + B) + sin(A – B) = 2 sin A cos B ii) sin(A + B) – sin(A – B) = 2 cos A sin B iii) cos(A + B) + cos(A – B) = 2 cos A cos B iv) cos(A + B) – cos(A – B) = –2 sin A sin B v) cos(A – B) – cos(A + B) = 2sin A sin B.

6.

i) sin(A + B) sin(A – B) = sin

2

A – sin

= cos ii) cos(A + B) cos(A – B) = cos

2

iv) cot(A + B) cot(A – B) =

2

B

B – cos

– sin

= cos

iii) tan(A + B) tan(A – B) =

2

2

2

2

B

B – sin

2

tan 2 A − tan 2 B 1 − tan2 A tan 2 B cot 2Acot 2B −1 2

A

2

cot B − cot A

A

π, then

v) tan(45

o

+

θ) =

cos θ + sin θ cos θ − sin θ

= cot(45

vi) tan(45

o



θ) =

o

7.

o

+

1 + tan θ 1 −tan θ

cos θ − sin θ cos θ + sin θ

= cot(45

and tan(45

θ) =



o

θ) . tan(45

o

1 − tan θ 1 +tan θ

+

θ) =



θ) = 1.

i) sin(A + B + C) =

∑(cos A cos B cos C) – sin A sin B sin C

ii) cos(A + B + C) = cos A cos B cos C –

iii) tan(A + B + C) =

∑(sin A sin B sin C)

∑ (tanA)− π(tanA) 1 − ∑ (tanAtanB) VSAQ’S

Simplify the following 1. cos 100° ⋅ cos 40° + sin 100° ⋅ sin 40° Sol. L.H.S. = = cos 100° ⋅ cos 40° + sin 100° ⋅ sin 40° 1 = cos (100° – 40°) = cos 60° = = R.H.S. 2

π  π  2. tan  + θ  ⋅ tan  − θ  4  4  π π tan + tan θ tan − tan θ 4 4 Sol. ⋅ π π 1 − tan tan θ 1 + tan tan θ 4 4 + θ − θ (1 tan ) (1 tan ) = ⋅ =1 (1 − tan θ) (1 + tan θ ) 3. tan 75° + cot 75° Sol. tan 75° = 2 + 3

cot 75 ° = 2 − 3 ∴ tan 75° + cot 75° = 2 + 3 + 2 − 3 = 4

4. Express Sol.

( 3 cos 25 ° +sin 25 °) as a sine of an angle. 2

( 3 cos 25° + sin 25° ) 2

3 1 cos 25 ° + sin 25° 2 2 = sin 60° cos 25° + cos 60 ° sin 25 ° =

= sin(60° + 25° ) = sin 85° 5. tan θ in terms of tan α, if sin(θ + α) = cos (θ + α). Sol. sin(θ + α) = cos (θ + α) sin( θ + α) =1 cos(θ + α )

tan(θ + α ) = 1 tan θ + tan α =1 1 − tan θ tan α tan θ + tan α = 1 − tan θ tan α tan θ + tan θ tan α = 1− tan α tan θ[1 + tan α ] = 1− tan α ∴tan θ =

1− tan α 1+ tan α

cos11 ° + sin11° and θ is in the third quadrant, find θ. cos11 ° − sin11° cos11 ° + sin11° Sol. tan θ = cos11 ° − sin11°  sin11°  cos11 ° 1 +  cos11 °  =  sin11°  cos11 ° 1 −  cos11 °  6. If tan θ =

1 + tan11° 1 − tan11° tan 45° + tan11° (∵ tan 45° = 1) = 1 − tan 45° tan11° tan θ = tan(45° + 11° ) =

= tan 56° = tan(180° + 56° ) = tan 236° θ = 236°

7. If 0° < A, B < 90°, such that cos A = Sol. cos A =

5 4 and sin B = , find the value of sin (A – B). 13 5

5 4 and sin B = 13 5

P

13

12

A

Q

5

R

PQ 2 = PR 2 − QR 2 = (13)2 − 52 = 169 − 25 = 144 PQ = 12 cos A =

5 12 ,sin A = 13 13

X

5

4 Y

B 3

Z

YZ 2 = XZ 2 − XY 2 = 52 − 42 = 24 − 16 = 9 YZ = 3 4 3 , cos B = 5 5 sin(A − B) = sin A cos B − cos A sin B

sin B =

=

12 3 5 4 36 20 36 − 20 16 × − × = − = = 13 5 13 5 65 65 65 65

8. What is the value of tan 20° + tan 40° + Sol. tan 20° + tan 40° + 3 tan 20° tan 40°

Consider 20° + 40° = 60° Tan(20° + 40°) = tan 60° tan 20° + tan 40° = 3 1 − tan 20° tan 40° tan 20° + tan 40° = 3(1− tan 20° tan 40° ) tan 20° + tan 40° = 3 − 3 tan 20° tan 40° tan 20° + tan 40° + 3 tan 20° tan 40° = 3

3 tan 20° tan 40°?

9. Find the value of tan 56° – tan 11° – tan 56° tan 11°. Sol. We have 56° – 11° = 45° tan(56° − 11°) = tan 45°

tan 56° − tan11° =1 1 + tan 56° tan11° tan 56 ° − tan11° = 1 + tan 56° tan11° tan 56° − tan11° − tan 56° tan11° = 1

sin(C − A) if none of sin A, sin B, sin C is zero. cos C sin A sin(C − A) sin C cos A − cos C sin A Sol. Σ =Σ sin Csin A sin Csin A sin Ccos A cos Csin A =Σ − sin Csin A sin Csin A = Σ cot A − cot C = cot A − cot C + cot B −cot A + cot C −cot B = 0 10. Evaluate Σ

11. tan 72° = tan 18° + 2 tan 54° Sol. 72° – 18° = 54° Take tan on both sides tan(72° − 18°) = tan 54° tan 72° − tan18° = tan 54° 1 + tan 72° tan18° tan 72° − tan18° = tan 54° 1 + tan(90 − 18) tan18° tan 72° − tan18° = tan 54° 1 + tan18° tan18° tan 72° − tan18° = tan 54° 1+1 tan 72° − tan18° = tan 54° 2 tan 72° − tan18° = 2 tan 54°

tan 72° = tan18° + 2 tan 54° 12. sin 750° cos 480° + cos 120° cos 60° = Sol. sin 750° = sin(2⋅360° + 30°) = sin 30° =

cos 480° = cos(360° + 120°) = cos 120° = 120° = cos(180° – 60°)

1 2

−1 2

= –cos 60° = – cos 120° = –

1 2

1 2

1 2 ∴ L.H.S. = = sin 750° cos 480° + cos 120° cos 60° 1 1  1 1 =  −  +−  2 2  2 2 cos 60° =

1 1 −2 −1 =− − = = = R.H.S. 4 4 4 2  4π   4π  − A  + cos  +A  = 0 13. cos A + cos   3   3   4π   4π  Sol. Consider cos  − A  + cos  + A  3 3     = cos(240 ° + A) + cos(240 ° − A)

= cos 240 ° cos A − sin 240 ° sin A + cos 240 °cos A +sin 240 °sin A = 2 cos 240 ° cos A = 2 cos(180 ° + 60 °) cos A = −2 cos 60° cos A 1 = −2 × cos A = − cos A 2

 2π   2π  3 14. cos 2 θ + cos 2  + θ  + cos 2  − θ  =  3   3  2  2π   2π  + θ  + cos 2  − θ Sol. cos 2   3   3 

= cos2 (60 ° + θ) + cos 2 (60 ° − θ) = [cos 60 ° cos θ − sin 60 °sin θ] 2 + [cos 60 ° cos θ + sin 60 °sin θ] 2 = 2(cos2 60 °cos 2 θ + sin 2 60 °sin 2 θ)[∵ (a + b)2 + (a − b)2 = 2(a2 + b2 )] 2  1 2   3   2 2   = 2   cos θ +   sin θ 2   2     

3 1  = 2  cos2 θ + sin 2 θ  4 4  2 = [cos 2 θ + 3sin2 θ ] 4 1 3 = cos 2 θ + sin 2 θ 2 2 1 3 ∴ L.H.S. = cos 2 θ + cos 2 θ + sin 2 θ 2 2 3 3 = cos 2 θ + sin 2 θ 2 2 3 =  cos 2 θ + sin 2 θ 2 3 = (∵ cos2 θ + sin 2 θ = 1) 2 = R.H.S. 1° 1° − sin 2 22 . 2 2 ° ° 1 1 Sol. Put A = sin 2 82 and B = sin 2 22 , then 2 2 1° 1° sin2 82 − sin2 22 2 2 15. Evaluate sin 2 82

= sin2 A − sin2 B = sin(A + B) sin(A − B) = sin105° sin 60° = sin(90° + 15° ) sin 60° = cos15 °sin 60° =

1+ 3 2 2



3 3+ 3 = 2 4 2

16. Prove that sin 2 52

10 10 3 +1 − sin 2 22 = 2 2 4 2

 π A  π A 17. sin 2  +  − sin 2  −  8 2  8 2  π A  π A Sol. sin 2  +  − sin2  −   8 2  8 2

[∵ sin 2 A − sin2 B = sin(A + B) sin(A − B)]  π A π A  π A π A = sin  + + −  sin  + − +  8 2 8 2  8 2 8 2  2π   2A  = sin   sin    8  2 π 1 sin A = sin sin A = sin 45° sin A = 4 2

1 1 18. cos 2 52 ° − sin 2 22 ° 2 2 1 1 Sol. cos 2 52 ° −sin 2 22 ° 2 2 [∵ cos 2 A − sin 2 B = cos(A + B) cos(A − B)] 1  1   1  1 = cos  52 ° + 22 °  cos  52 ° − 22 °  2  2   2  2 = cos 75 ° cos30 ° =

3 (cos 75°) 2

=

3  3 − 1  3− 3  = 2  2 2  4 2

  10 10 10 10  10 10 − sin 2 52 = cos 112 + 52  cos 112 − 52  2 2 2 2  2 2    (∵ cos2 A − sin2 B = cos ( A + B ) cos ( A − B ) )

19. cos2 112

= cos165 0. cos 60 0 =

=−

1  3 + 1   2  2 2 

1 1 cos (180 0 − 15 0 ) = − cos15 0 2 2

20. Prove that tan 3A tan 2A tan A = tan 3A − tan 2A −tan A Solution: We know that tan 3A = tan ( 2A + A ) tan 2 A + tan A tan 3A = 1 − tan 2 A tan A tan 3A − tan 2A tan A tan 3 = tan 2A + tan A tan 3A − tan 2 − tan A = tan A tan 2A tan 3A

21. Find the expansion of sin(A + B + C). Sol. sin(A + B + C) = sin[(A + B) − C]

= sin(A + B) cos C − cos(A − B) sin C = (sin A cos B + cos A sin B) cos C −[cos(A − B) cos B − sin A sin B]sin c = sin A cos B cos C + cos A sin B cos C − cos A cos Bsin C +sin A sin Bsin C

22. Find the expansion of cos (A – B – C). Sol. cos (A – B – C) = cos[(A – B) – C] = cos(A − B) cos C + sin(A − B)sin C

= (cos A cos B + sin A sin B) cos C + (sin A cos B − cos A sin B]sin C = cos A cos B cos C +sin A sin Bcos C +sin A cos Bsin C −cos A sin Bsin C 23. For what values of x in the first quadrant Sol.

2 tan x > 0 ⇒ tan 2x > 0 1 − tan 2 x π ⇒ 0 < 2x < (since x in the first quadrant) 2 π ⇒ 0 < x< 4

Therefore,

π 2 tan x is positive for 0 < x < 2 4 1 − tan x

2 tan x is positive? 1 − tan2 x

SAQ’S 24. Prove that sin 4

π 8

+ sin

4

3π 3 4 5π 4 7π + sin + sin = 8 8 8 2

Solution:

sin4

π 8

+ sin4

3π 5π 7π + sin4 + sin4 8 8 8

4

4

  2 π π   2 π π  +  sin 2 − 8  +  sin  2 + 8      π π π + cos4 + cos 4 + sin 4 8 8 8  π π π π  2  sin 4 + cos4  = 2  sin 2 + cos 2 8 8 8 8  

 π sin 8  π sin4 8

= 2 − 4sin

2

π 8

cos 2

2

π      +  sin π − 8     

4

2 π   2π cos 2   − 2sin 8 8  

π 8 2

π π π 1 3  = 2 −  2sin cos  = 2 − sin 2 = 2 − = 8 8 4 2 2  5π 7π 3 + cos 4 = 8 8 8 8 2 1 26. Prove that (i) sin A sin ( 60 − A) sin 600 + A = sin 3A 4 1 (ii) cos A cos (60 + A )cos 60 0 − A = cos3 A 4 0 0 (iii) tan A tan (60 + A ) tan ( 60 − A ) = tan 3A 25. Prove that cos 4

π

+ cos 4 3

π

+ cos 4

(

)

(

)

3 16 π π π π 2 3 4 1 cos cos (v) cos cos = 9 9 9 9 16

(iv) sin 200 sin 400 sin 600 sin 800 =

27. Prove that tan θ + 2 tan 2θ + 4 tan 4θ + 8cot 8θ = cot θ

7 π −3 π , where < α < π and 0 < β < , then find the values of and sin β = 2 5 25 2 tan(α + β) and sin(α + β). −3 π , where < α < π Sol. cos α = 2 5 α in II quadrant π 7 sin β = , where 0 < β < 25 2 β in I Quadrant 28. If cos α =

A

5

4

α

B

3

C

AB2 = AC2 − BC2 = 52 − 32 = 25 − 9 = 16 ∴ AB = 4 3 4 4 cos α = − ,sin α = , tan α = − 5 5 3 X

25

7

β

Y

24

Z

YZ2 = XZ2 − XY2 = 25 2 − 7 2 = 625 − 49 = 576 YZ = 24 7 24 7 , cos β = , tan β = 25 25 24 tan α + tan β ∴tan( α + β) = 1 − tan α tan β −4 7 − 32 + 7 + 4 = 3 24 = 4 7 7 1+ × 1+ 3 24 18 −25 3 − 25 18 = 24 = × =− 18 + 7 24 25 4 18 sin(α + β ) = sinα cosβ + cos α sin β sin β =

4 24 − 3 7 = × + × 5 25 5 25 96 21 75 3 = − = = 125 125 125 5

29. If 0 < A < B <

24 4 π and cos(A − B) = , then find the value of and sin(A + B) = 4 25 5

tan 2A. Sol. sin(A + B) =

24 25

25

24

A+B 7

24 7 4 cos(A − B) = 5 tan(A + B) =

5

3

A–B 4

3 4 Now 2A = (A + B) + (A – B) tan 2A = tan [ (A + B) + (A − B)] tan(A − B) =

=

tan(A + B) + tan(A − B) 1 − tan(A + B) tan(A − B)

24 3 + 96 + 21 − 117 = 7 4 = = 24 3 28 − 72 44 1− × 7 4 30. If A + B , A are acute angles such that sin ( A + B) =

24 3 and tan A = find the value of 25 4

cos B Solution: sin ( A + B ) =

24 25

∴cos ( A + B ) =

7 25

3 3 4 ∴ sin A = & cos A = 4 5 5 cos B = cos( A + B − A) = cos( A + B ) cos A + sin ( A + B ) sin A 7 4 24 3 100 4 × + × = = 25 5 25 5 125 5 tan A =

31. If tan α – tan β = m and cot α – cot β = n, then prove that cot( α − β) =

1 1 − . m n

Sol. We have tan α – tan β = m 1 1 − =m cot α cot β

cot β − cot α =m cot α cot β cot α cot β 1 = cot β − cot α m cot α − cot β= n



...(1)

− (cot β − cot α) = n cot β − cot α = −n 1 1 =− cot β − cot α n L.H.S. = cot( α − β) =

...(2) cot α cot β cot β −cot α

=

cot α cot β 1 + cot β − cot α cot β − cot α

=

1 1 − (∵ from(1) & (2)) = R.H.S. m n

32. If tan(α – β) =

7 4 and tan α = , where α and β are in the firs quadrant prove that 24 3

α + β = π/2. 7 4 Sol. tan(α – β) = and tan α = 24 3 7

25 2β 34

tan(α − β ) =

tan α − tan β 1+ tanα tanβ

4 − tan β 7 ⇒ 3 = 4 1+ tanβ 24 3 4 − 3 tan β 7 3 ⇒ = 3+ 4 tanβ 24 3 4 − 3 tan β 7 ⇒ = 3 + 4 tan β 24

⇒ 24[4 − 3 tan β ] = 7(3+ 4 tanβ ) ⇒ 96 − 72 tanβ = 21+ 28 tanβ ⇒ 96 − 21 = 28 tanβ + 72 tanβ ⇒ 100 tan β = 75 75 3 = 100 4 tan α + tan β ∴tan( α + β) = 1 − tan α tan β 4 3 + = 3 4 =α 4 3 1− ⋅ 3 4 π tan(α + β ) = tan 2 π ∴α + β = 2 ∴tan β =

sin(α + β ) a + b = , then prove that a tan β = b tan α . sin(α − β) a − b sin(α + β ) a + b Sol. Given that = sin( α − β) a − b 33. If

By using componendo and dividendo, we get sin(α + β ) + sin(α − β ) a + b + a − b 2a a = = = sin(α + β ) − sin(α −β ) a+ b− a+ b 2b b



sin(α + β ) + sin(α − β ) a = sin(α + β ) − sin(α −β ) b



sin α cosβ + cos α sin β+ sin α cos β − cos α sin β a = sin α cos β + cos α sin β − sin α cos β + cos α sin β b

2sin α cos β a = 2 cos α sin β b a ⇒ tan α cot β = b ⇒ b tan α = a tan β hence, a tan β = b tanα



3π , then show that 4 (1 – tan A) (1 + tan B) = 2. 3π Sol. A − B = 4 A − B = 135° 34. If A − B =

tan(A − B) = tan135° = tan(90° + 45)° = − cot 45° = − 1 ∴

tan A − tan B = −1 1 + tan A tan B tan A − tan B = − (1+ tan A tan B) tan A − tan B = − 1− tan A tan B tan A − tan B+ tan A tan B= − 1 tan B − tan A − tan A tan B = 1 ...(1) L.H.S. = (1 − tan A)(1 + tan B) = 1+ (tan B− tan A − tan A tan B) = 1+ 1 (∵ from(1)) = 2 = R.H.S.

π and if none of A, B, C is an odd multiple of π/2, then prove that 2 cot A + cot B + cot C = cotA cotB cotC. π Sol. A + B + C = 2 π A+ B= − C 2 π  cot(A + B) = cot  − C  2  − cot A cot B 1 = tan C cot B +cot A cot A cot B − 1 1 = cot B +cot A cot C cot C[cot A cot B −1] = cot B + cot A 35. If A + B + C =

cot A cot B cot C −cot C cot A +cot B cot A cot B cot C = cot A + cot B +cot C ∴cot A +cot B +cot C =cot A cot Bcot C

π and if none of A, B, C is an odd multiple of π/2, then prove that, 2 tan A tan B + tan B tan C + tan C tan A = 1. π Sol. A + B + C = 2 π A+ B= − C 2 π  tan(A + B) = tan  − C  2   36. If A + B + C =

tan A + tan B = cot C 1 − tan A tan B tan A + tan B 1 ⇒ = − 1 tan A tan B tan C ⇒ tan C[tan A + tan B] = 1− tan A tan B ⇒

⇒ tan C tan A + tan C tan B = 1− tan A tan B ⇒ tan A tan B + tan B tan C+ tan C tan A= 1 cos(B + C) = 2. cos B cos C cos(B +C) Sol. L.H.S. = Σ cos Bcos C cos B cos C −sin Bsin C =Σ cos B cos C cos B cos C sin Bsin C =Σ − cos Bcos C cos Bcos C = Σ(1 − tan B tan C) 37. Σ

= 1 − tan B tan C + 1− tan C tan A +

1− tan A tan B

= 3 − (tan A tan B + tan B tan C + tan C tan A) = 3 − 1 (∵ from(b)) = 2 = R.H.S.

38. Prove that sin2 α + cos2 (α + β) + 2 sin α sin β cos(α + β) is independent of α. Sol. Given expression, sin2α + cos2 (α+β) + 2 sinα sinβ cos(α+β)

= sin 2 α + 1 − sin 2 (α + β ) + 2sin α sinβ cos(α + β ) = 1+ [sin2 α − sin2 (α + β )]+ 2sinα sinβ cos(α + β ) = 1+ sin(α + α + β ) sin(α − α −β ) + 2sin α sinβ cos(α + β )

= 1+ sin(2α + β ) sin(−β ) + 2sinα sinβ cos(α + β ) = 1− sin(2α + β ) sinβ + [2sinα cos(α + β )]sinβ = 1− sin(2α + β ) sin α + [sin(α + α + β )+ sin(α − α − β )]sinβ = 1− sin(2α + β ) sinα + [sin(2α + β )− sinβ ]sinβ = 1− sin(2α + β ) sin α + sin(2α + β ) sinβ − sin2 β = 1− sin2 β = cos 2 β Thus the given expression is independent of α.

π 2π 3π 7π ⋅ cot ⋅ cot ...cot =1 . 16 16 16 16 2π 3π 7π π ⋅cot ...cot Sol. cot ⋅cot 16 16 16 16 π 7π  2π 6π   3π 5π  4π  =  cot ⋅ cot ⋅cot ⋅cot  cot  cot  ⋅cot 16  16 16   16 16  16  16 39. Prove that cot

2π 3π  π π  π π    π 2π    π 3π  =  cot ⋅ cot  −    cot ⋅ cot  −   cot ⋅cot  −   ⋅cot 4  2 16    16  2 16    16  2 16    16 π π  2π 2π   =  cot ⋅ tan   cot ⋅ tan  16   16 16   16 = 1× 1× 1× 1 = 1

3π 3π    cot ⋅ tan  ⋅1 16   16

40. Prove that tan 70° – tan 20° = 2 tan 50°. Sol. tan 50° = tan(70° – 20°) tan 70° − tan 20° = 1 + tan 70° tan 20° ⇒ tan 70 ° − tan 20°

= tan 50°(1 + tan 70° ⋅ tan 20°) = tan 50°(1 + tan 70° ⋅ tan(90° − 70° )] = tan 50°[1 + tan 70° ⋅ cot 70°] = tan 50°[1 + 1] = 2 tan 50° ∴ tan 70° − tan 20° = 2 tan 50°

41. If A + B = 45°, then prove that i) (1 + tan A) (1 + tan B) = 2 ii) (cot A – 1)(cot B – 1) = 2. Sol. i) A + B = 45° ⇒ tan(A + B) = tan 45° = 1

tan A + tan B =1 1 − tan A tan B ⇒ tan A + tan B = 1− tan A tan B ⇒

⇒ tan A + tan B + tan A tan B = 1...(1) Now, (1 + tan A)(1+ tan B) = 1+ tan A+ tan B+ tan A tan B= 2 (from(1)) ii) A + B = 45° ⇒ cot(A + B) = cot 45° = 1 cot A cot B− 1 ⇒ =1 cot B + cot A ⇒ cot A cot B −1 = cot A + cot B ⇒ cot A cot B − cot A − cot B =1...(2) Now, (cot A −1)(cot B −1) = cot A cot B − cot A −cot B +1 = 2 (from(2)) 42. If A, B, C are the angles of a triangle and if none of them is equal to π/2, then prove that i) tan A + tan B + tan C = tan A tan B tan C ii) cotA cotB + cotB cotC + cot C cot A =1 Sol. i) Given A + B + C = π ⇒ A +B = π−C

⇒ tan(A + B) = tan(π − C) tan A + tan B = − tan C 1 − tan A tan B ⇒ tan A + tan B = − tan C(1 − tan A tan B)



⇒ tan A + tan B = − tan C + tan A tan B tan C ⇒ tan A + tan B + tan C = tan A tan B tan C 1 etc., in (i) above, we get ii) Replacing tan A by cot A 1 1 1 1 + + = cot A cot B cot C cot A cot B cot C ⇒ cot A cot B + cot Bcot C +cot Ccot A =1

LAQ’S 43. Let ABC be a triangle such that cot A + cot B + cot C = 3 . Then prove that ABC is an equilateral triangle. Sol. Given that A + B + C = 180° We get Σ cot A cot B = 1 Now, Σ(cot A – cot B)2 = Σcot2 A + cot2 B – 2 cot A cot B 2 2 2 = 2 cot A + 2 cot B + 2 cot C − 2 cot A cot B −2 cot B cot C −2 cot Cco t A

(on expanding) 2 = 2{(cot A + cot B + cot C) − 2(cot A cot B) − 2 cot B cot C −2 cot Ccot A}

− 2(cot A cot B + cot B cot C + cot Ccot A) = 2(cot A + cot B + cot C) 2 − 6(cot A cot B +cot Bcot C +cot Ccot A) = 2 ⋅3 − 6 = 0 ⇒ cot A = cot B = cot C

⇒ cot A = cot B = cot C =

3 1 = 3 3

(since cot A + cot B+ cot C = 3)

⇒ A + B + C = 60° (Since each angle lies in the interval [0,180°]...


Similar Free PDFs