Introduction to Finance 6 - Arithmetic and geometric progressions PDF

Title Introduction to Finance 6 - Arithmetic and geometric progressions
Author John Mpeti
Course Corporate Finance and Strategy
Institution Manchester Metropolitan University
Pages 22
File Size 485.5 KB
File Type PDF
Total Downloads 27
Total Views 136

Summary

Arithmetic and geometric sequences
Lecture by Sir Kevin Albertson...


Description

IIntroduction t d ti to t Finance Fi 6 – Arithmetic and geometric progressions Kevin Albertson [email protected]

 

Mathematical Economics  (5L4Z0009)

Present Values

 Finite progressions  Infinite progressions



  ! "!#"$$$

 

 Arithmetic progressions  Geometric Progressions

Arithmetic Progressions



  ! "!#"$$$

 

 An arithmetic progression is a sequence of terms in which each term is obtained by adding a constant factor to the preceding term 2 4 6 8 10 … 3 6 9 12 15 … 10 9 8 7 6 5 4 3 2 1 …  The initial term is denoted , and the increment .  The series is denoted  + +2 +3 +4 and so on.  The th term is  + (–1)

Geometric Progressions



  ! "!#"$$$

 

 A geometric progression is a sequence of terms in which each term is obtained by multiplying the preceding term by a constant factor eg e.g. 1 2 4 8 16 32 … 32 8 2 ½ …  Let us denote the initial term in the sequence  and the common factor   The series is described by:   2 3 4 5 6 …

Geometric Progressions



  ! "!#"$$$

 

 Let us denote the initial term in the sequence  and the common factor   The series is described by:   2 3 4 5 6 …  The 5thh term of the sequence is 4 the 20th term of the sequence is 19 the th term of the sequence is –1

 Suppose we have a progression with a finite number of terms, for example 1 2 4 8 16 32 64 128  We wish to determine the sum of the elements of this series  Let the sum of the first  terms in a geometric progression be denoted   =  +  + 2 + 3 … + –1 

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Let the sum of the first  terms in a geometric progression be denoted   =  +  + 2 + 3 … + –1



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Let the sum of the first  terms in a geometric progression be denoted   =  +  + 2 + 3 … + –1  =  + 2 + 3 … + –11 + 



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Let the sum of the first  terms in a geometric progression be denoted   =  +  + 2 + 3 … + –1  =  + 2 + 3 … + –11 +   –  =  – 



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Let the sum of the first  terms in a geometric progression be denoted   =  +  + 2 + 3 … + –1  =  + 2 + 3 … + –11 +   –  =  –   (1 – ) =  –  

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Let the sum of the first  terms in a geometric progression be denoted 

 (1 −   )  = 1−   NB This formula is invalid when  = 1



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Consider the series: 48 12 3 ¾ …  = 48,  = ¼  The 6th element of the series is 48 × (¼)5 = 0%046875  The sum of the first 6 elements of this series is

48(1 − ¼ 6 ) = 63·984375 6 = 1− ¼ 

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Consider the series: 48 12 3 ¾ …  = 48,  = ¼  The 6th element of the series is 48 × (¼)5 = 0%046875  The sum of the first 10 elements of this series is

48(1 − ¼10 ) = 63·99993  10 = 1− ¼ 

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of finite order

 Consider the series where  = 16,  = ¾    1 2 3 4 5



16 12 9 6%75 5%0625

16 28 37 43%75 48%8125

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order



 = 16,  = ¾



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 As  gets larger and larger,  gets closer and closer to 64  We write this  → 64 as  → ∞ or Limit() = 64 →∞



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order



 = 16,  = 1¼



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 Progressions of infinite order  Two cases  The sum of the series has a limit The progression is convergent  The sum of the series has no limit The progression is divergent



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 Progressions of infinite order  Two cases  The process is convergent when –1 <  < 1  The process is divergent when  < –1 or  > 1



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 Convergent Progressions of infinite order  The sum  =  +  + 2 + … + ∞ where || < 1 is given by  Limit   =  →∞ 1−



  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 Consider the series where  = 16,  = ¾

Limit   =  →∞

16 16  = = 1 = 64 1 −  1 − 34 4

 Consider the series where  = 1,  = 0%9

Limit   =  →∞



 1 1 = = = 10 1 −  1 − 0·9 0·1

  ! "!#"$$$

 

Geometric Progressions Sum of progressions of infinite order

 ...


Similar Free PDFs