Magnetically coupled textbook PDF

Title Magnetically coupled textbook
Author Anonymous User
Course Circuits and Signals
Institution University of New South Wales
Pages 90
File Size 5.1 MB
File Type PDF
Total Downloads 2
Total Views 131

Summary

Magnetically coupled textbook...


Description

553

chapter

13 Magnetically CoupledCircuits Ifyouwouldincreaseyourhappinessandprolongyourlife,forgetyourneighbor’sfaults.. . Forget the peculiarities of your friends, and only remember the good points which mak youfondofthem....Obliterateeverythingdisagreeablefromyesterday;writeupontoday cleansheetthosethingslovelyandlovable. —Anonymous

EnhancingYourCareer

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

CareerinElectromagnetics Electromagnetics(EM)isthebranchofelectricalengineering(orphysics)thatdealswiththe analysis and application of electric and magnetic fields. In electromagnetics, electric circui analysisisappliedatlowfrequencies.

Telemetryreceivingstationforspacesatellites.©DV169/GettyImagesRF

TheprinciplesofEMareappliedinvariousallieddisciplines,suchaselectricmachines electromechanical energy conversion, radar meteorology, remote sensing, satellit Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

communications, bioelectromagnetics, electromagnetic interference and compatibility plasmas, and fiber optics. EM devices include electric motors and generators, transformers electromagnets, magnetic levitation, antennas, radars, microwave ovens, microwave dishes superconductors, and electrocardiograms. The design of these devices requires a thoroug knowledgeofthelawsandprinciplesofEM. EM is regarded as one of the more difficult disciplines in electrical engineering. On reasonisthatEMphenomenaareratherabstract.Butifoneenjoysworkingwithmathematic andcanvisualizetheinvisible,oneshouldconsiderbeingaspecialistinEM,inasmuchasfew electrical engineers specialize in this area. Electrical engineers who specialize in EM ar needed in microwave industries, radio/TV broadcasting stations, electromagnetic researc laboratories,andseveralcommunicationsindustries. 554

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

Historical

©Bettmann/Corbis

James Clerk Maxwell (1831–1879), a graduate in mathematics from Cambridge University,in1865wroteamostremarkable paperinwhich hemathematically unified the lawsofFaradayandAmpere.Thisrelationshipbetweentheelectricfieldandmagneticfield served as the basis for what was later called electromagnetic fields and waves, a major fieldofstudyinelectricalengineering.TheInstituteofElectricalandElectronicsEngineers (IEEE)usesagraphicalrepresentationofthisprincipleinitslogo,inwhichastraightarrow representscurrentandacurvedarrowrepresentstheelectromagneticfield.Thisrelationship is commonly known as the right-hand rule. Maxwell was a very active theoretician and scientist. He is best known for the “Maxwell equations.” The maxwell, a unit of magnetic flux,wasnamedafterhim.

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

LearningObjectives Byusingtheinformationandexercisesinthischapteryouwillbeableto: 1. Understand the physics behind mutually coupled circuits and how to analyze circuits containingmutuallycoupledinductors. 2. Understandhowenergyisstoredinmutuallycoupledcircuits. 3. Understandhowlineartransformersworkandhowtoanalyzecircuitscontainingthem. 4. Understandhowidealtransformersworkandhowtoanalyzecircuitscontainingthem. 5. Understand how ideal auto transformers work and know how to analyze them when usedinavarietyofcircuits.

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

13.1

Introduction

Thecircuitswehaveconsideredsofarmayberegardedas conductivelycoupled,becauseon loopaffectstheneighboringloopthroughcurrentconduction.Whentwoloopswithorwithou contactsbetweenthem affecteachotherthroughthe magneticfieldgeneratedby oneofthem theyaresaidtobemagneticallycoupled. Thetransformerisan electricaldevicedesigned onthebasis ofthe conceptof magnetic coupling. It uses magnetically coupled coils to transfer energy from one circuit to another Transformers are key circuit elements. They are used in power systems for stepping up o steppingdownacvoltagesorcurrents.Theyareusedinelectroniccircuitssuchasradioand television receiversforsuch purposes asimpedance matching,isolatingone part of a circui fromanother,andagainforsteppingupordownacvoltagesandcurrents. Wewillbeginwiththeconceptofmutualinductanceandintroducethedotconventionused fordeterminingthevoltagepolaritiesofinductivelycoupledcomponents.Basedonthenotion ofmutualinductance, 555 we thenintroduce the circuit elementknownasthe transformer. We will consider the linea transformer, the ideal transformer, the idealautotransformer,andthe three-phase transformer Finally,amongtheirimportantapplications,welookattransformersasisolatingandmatching devicesandtheiruseinpowerdistribution.

13.2

MutualInductance

Whentwoinductors(orcoils)areinacloseproximitytoeachother,themagneticfluxcaused by current in one coil links with the other coil, thereby inducing voltage in the latter. Thi phenomenonisknownasmutualinductance. Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

Figure13.1 MagneticfluxproducedbyasinglecoilwithNturns.

Letusfirstconsiderasingleinductor,acoilwithNturns.Whencurrentiflowsthroughthe coil, a magnetic flux ϕ is produced around it (Fig. 13.1). According to Faraday’s law, th voltage v induced in the coil is proportional to the number of turns N and the time rate o changeofthemagneticfluxϕ;thatis, (13.1)

But the flux ϕ is produced by current i so that any change in ϕ is caused by a change in th current.Hence,Eq.(13.1)canbewrittenas (13.2)

or (13.3)

which is the voltage-current relationship for the inductor. From Eqs. (13.2) and (13.3), th inductanceLoftheinductoristhusgivenby (13.4)

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

Thisinductanceiscommonlycalled self-inductance,becauseitrelatesthevoltageinducedi acoilbyatime-varyingcurrentinthesamecoil.

Figure13.2 MutualinductanceM 21ofcoil2withrespecttocoil1.

Nowconsidertwocoilswithself-inductancesL1andL2thatare in closeproximitywith eachother(Fig.13.2).Coil1hasN1turns,whilecoil2hasN2turns.Forthesakeofsimplicity assumethatthesecondinductorcarriesnocurrent.Themagneticfluxϕ1emanatingfromcoil has two components: One component ϕ11 links only coil 1, and another component ϕ12 link bothcoils.Hence,

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

ϕ1=ϕ11+ϕ12

(13.5)

Although the two coils are physically separated, they are said to be magnetically coupled Sincetheentirefluxϕ1linkscoil1,thevoltageinducedincoil1is (13.6)

Onlyfluxϕ12linkscoil2,sothevoltageinducedincoil2is (13.7)

556 Again,asthefluxesarecausedbythecurrenti1flowingincoil1,Eq.(13.6)canbewrittenas (13.8)

whereL1=N1dϕ1/di1istheself-inductanceofcoil1.Similarly,Eq.(13.7)canbewrittenas (13.9)

where

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

(13.10)

M21isknownasthe mutualinductance ofcoil2withrespecttocoil1.Subscript21indicate thattheinductanceM21relatesthevoltageinducedincoil2tothecurrentincoil1.Thus,th open-circuitmutualvoltage(orinducedvoltage)acrosscoil2is

(13.11)

Supposewenowletcurrent i2flowincoil2,whilecoil1carriesnocurrent(Fig. 13.3) Themagneticfluxϕ2emanatingfromcoil2comprisesfluxϕ22that linksonly coil2andflux ϕ21thatlinksbothcoils.Hence, ϕ2=ϕ21+ϕ22

(13.12)

Theentirefluxϕ2linkscoil2,sothevoltageinducedincoil2is (13.13)

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

where L2 = N2 dϕ2/di2 is the self-inductance of coil 2. Since only flux ϕ21 links coil 1, th voltageinducedincoil1is (13.14)

where (13.15)

whichisthemutualinductanceofcoil1withrespecttocoil2.Thus,theopen-circuitmutua voltageacrosscoil1is

(13.16)

WewillseeinthenextsectionthatM12andM21areequal;thatis, M12=M21=M

(13.17)

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

and we refer to M as the mutual inductance between the two coils. Like self-inductance L mutualinductance Mismeasuredinhenrys(H).Keepinmindthatmutualcouplingonlyexist whentheinductorsorcoilsareincloseproximity,andthecircuitsaredrivenbytime-varyin sources.Werecallthatinductorsactlikeshortcircuitstodc.

Figure13.3 MutualinductanceM 12ofcoil1withrespecttocoil2.

FromthetwocasesinFigs.13.2and 13.3,weconcludethatmutualinductanceresultsif voltageisinducedbyatime-varyingcurrentinanothercircuit.Itisthepropertyofaninducto toproduceavoltageinreactiontoatime-varyingcurrentinanotherinductornearit.Thus, 557 Mutualinductanceistheabilityofoneinductortoinduceavoltageacrossaneighboringinductor,measuredin henrys(H).

Although mutual inductance M is always a positive quantity, the mutual voltage M di/d may be negative or positive, just like the self-induced voltage Ldi/dt. However, unlike th Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

self-inducedLdi/dt,whosepolarityisdeterminedbythereferencedirectionofthecurrentand thereferencepolarityofthevoltage(accordingtothepassivesignconvention),thepolarityo mutual voltage M di/dt is not easy to determine, because four terminals are involved. Th choice of the correct polarity for M di/dt is made by examining the orientation or particula wayinwhichbothcoilsarephysicallywoundandapplyingLenz’slawinconjunctionwithth right-hand rule.Since it is inconvenienttoshowthe construction detailsofcoilson a circui schematic,weapplythe dotconventionincircuitanalysis.Bythisconvention,adotisplace inthecircuitatoneendofeachofthetwomagneticallycoupledcoilstoindicatethedirectio ofthemagneticfluxifcurrententersthatdottedterminalofthecoil.ThisisillustratedinFig 13.4.Givenacircuit,thedotsarealreadyplacedbesidethecoilssothatweneednotbothe about how to place them. The dots are used along with the dot convention to determine th polarityofthemutualvoltage.Thedotconventionisstatedasfollows: Ifacurrententersthedottedterminalofonecoil,thereferencepolarityofthemutualvoltageinthesecondcoilis positiveatthedottedterminalofthesecondcoil.

Alternatively, Ifacurrentleavesthedottedterminalofonecoil,thereferencepolarityofthemutualvoltageinthesecondcoilis negativeatthedottedterminalofthesecondcoil.

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

Thus, the reference polarity of the mutual voltage depends on the reference direction of th inducing current and the dots on the coupled coils. Application of the dot convention i illustratedinthefourpairsofmutuallycoupledcoilsinFig.13.5.ForthecoupledcoilsinFig 13.5(a),thesignofthemutualvoltagev2isdeterminedbythereferencepolarityfor v2andth directionofi1.Sincei1enters

Figure13.4 Illustrationofthedotconvention.

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

Figure13.5 Examplesillustratinghowtoapplythedotconvention.

558 the dotted terminal of coil 1 and v2 is positive at the dotted terminal of coil 2, the mutua voltageis+Mdi1/dt.ForthecoilsinFig.13.5(b),thecurrenti1entersthe dotted terminal o coil 1 and v2 is negative at the dotted terminal of coil 2. Hence, the mutual voltage is −M di1/dt.ThesamereasoningappliestothecoilsinFigs.13.5(c)and13.5(d).

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

Figure13.6 Dotconventionforcoilsinseries;thesignindicatesthepolarityofthemutualvoltage:(a)series-aidingconnection,(b)seriesopposingconnection.

Figure 13.6 shows the dot convention for coupled coils in series. For the coils in Fig 13.6(a),thetotalinductanceis

L=L1+L2+2M

  (Series-aidingconnection)

ForthecoilsinFig.13.6(b),

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

L=L1+L2−2M

  (Series-opposingconnection)

Now that we know how to determine the polarity of the mutual voltage, we are prepared to analyzecircuitsinvolvingmutualinductance.Asthefirstexample,considerthecircuitinFig 13.7(a).ApplyingKVLtocoil1gives (13.20a)

Forcoil2,KVLgives (13.20b)

WecanwriteEq.(13.20)inthefrequencydomainas Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

V1=(R1+jωL1)I1+jωMI2

(13.21a)

V2=jωMI1+(R2+jωL2)I2

(13.21b)

As a second example, consider the circuit in Fig. 13.7(b). We analyze this in the frequenc domain.ApplyingKVLtocoil1,weget V=(Z1+jωL1)I1−jωMI2

(13.22a)

0=−jωMI1+(ZL+jωL2)I2

(13.22b)

Forcoil2,KVLyields

Equations(13.21)and(13.22)aresolvedintheusualmannertodeterminethecurrents. One of themostimportant things inmakingsureone solvesproblemsaccuratelyistobe able to check each step during the solution process and to make sure assumptions can b verified.Toooften,solvingmutuallycoupledcircuitsrequirestheproblemsolvertotracktwo ormorestepsmadeatonceregardingthesignandvaluesofthemutuallyinducedvoltages.

Figure13.7 Time-domainanalysisofacircuitcontainingcoupledcoils(a)andfrequency-domainanalysisofacircuitcontainingcoupledcoils (b).

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

559

Figure13.8 Modelthatmakesanalysisofmutuallycoupledeasiertosolve.

Experiencehasshownthatifwebreaktheproblemintostepsofsolvingforthevalueand the sign into separate steps, the decisions made are easier to track. We suggest that mode (Figure13.8(b))beusedwhenanalyzingcircuitscontainingamutuallycoupledcircuitshown inFigure13.8(a): Noticethatwehavenotincludedthesignsinthemodel.Thereasonforthatisthatwefirs

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

determine the value of the induced voltages and then we determine the appropriate signs Clearly, I1 induces a voltage within the second coil represented by the value jωI1 and I inducesavoltageof jωI2inthefirstcoil.Oncewehavethevalueswenextusebothcircuitst findthecorrectsignsforthedependentsourcesasshowninFigure13.8(c). SinceI1entersL1atthedottedend,itinducesavoltageinL2thattriestoforceacurren outofthedottedendofL2whichmeansthatthesourcemusthaveaplusontopandaminuso the bottom as shown in Figure 13.8(c). I2 leaves the dotted end of L2 which means that induces a voltage in L1 which tries to force a current into the dotted end of L1 requiring dependentsourcethathasaplusonthebottomandaminusontopasshowninFigure13.8(c) Nowallwehavetodoistoanalyzeacircuitwithtwodependentsources.Thisprocessallow youtocheckeachofyourassumptions. At this introductory level we are not concerned with the determination of the mutua inductances of the coils and their dotplacements. Like R, L,and C, calculation of M would involveapplyingthetheoryofelectromagneticstotheactualphysicalpropertiesofthecoils.In thistext,weassumethatthemutualinductanceandtheplacementofthedotsarethe“givens’ ofthecircuitproblem,likethecircuitcomponentsR,L,andC. 

Example13.1

Copyright © 2016. McGraw-Hill Higher Education. All rights reserved.

CalculatethephasorcurrentsI1andI2inthecircuitofFig.13.9.

Figure13.9 ForExample13.1.

Solution: Forloop1,KVLgives −12+(−j4+j5)I1−j3I2=0 560 or jI1−j3I2=12 Forloop2,KVLgives −j3I1+(12+j6)I2=0

Alexander, Charles K., and Matthew N. O. Sadiku. Fundamentals of Electric Circuits, McGraw-Hill Higher Education, 2016. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unsw/detail.action?docID=5471298. Created from unsw on 2020-04-05 16:43:44.

(13.1.1)

or (13.1.2)

SubstitutingthisinEq.(13.1.1),weget (j2+4−j3)I2=(4−j)I2=12 or  

(13.1.3)

FromEqs.(1...


Similar Free PDFs