Materiales conductores .semiconductores y superconductores explicacion PDF

Title Materiales conductores .semiconductores y superconductores explicacion
Author Leonardo Hudson
Course Operaciones Unitarias
Institution Universidad Tecnológica del Sureste de Veracruz
Pages 4
File Size 177.8 KB
File Type PDF
Total Downloads 86
Total Views 153

Summary

Resumen acerca de los materiales conductores , semiconductores y superconductores, con explicación bien detallada e orgánica....


Description

Los materiales conductores de electricidad ofrecen poca resistencia al movimiento de la carga eléctrica. Sus átomos se caracterizan por tener pocos electrones en su capa de valencia, por lo que no se necesita mucha energía para que estos salten de un átomo a otro. Los mejores materiales conductores son metales, como el cobre, el oro, el hierro, la plata y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua del mar). Los materiales de este tipo suelen clasificarse de la siguiente manera: • Conductores metálicos. Son los que tienen una conducción electrónica, ya que los portadores de las cargas son electrones libres. Esto ocurre porque a este grupo pertenecen los metales y las aleaciones. • Conductores electrolíticos. Son los que tienen una conducción de tipo iónica, donde las sustancias se disocian total o parcialmente formando iones positivos o negativos, que son los portadores de cargas. Aquí el paso de la corriente eléctrica se produce en consonancia con un desplazamiento de materia y con una reacción química. • Materiales conductores gaseosos. Son aquellos gases que han sido ionizados (han perdido o ganado electrones) y con ello han adquirido la capacidad de conducir la electricidad. Si bien no se utilizan con frecuencia, el aire es un gas y en ciertas condiciones es un gran conductor de la electricidad, lo que se evidencia en los rayos y las descargas eléctricas de ese tipo.

Los semiconductores son materiales capaces de actuar como conductores eléctricos o como aislantes eléctricos, dependiendo de las condiciones físicas en que se encuentren. Estas condiciones usualmente involucran la temperatura y la presión, la incidencia de las radiaciones o las intensidades del campo eléctrico o campo magnético al cual se vea sometido el material. Los semiconductores están compuestos por elementos químicos muy variados entre sí, que de hecho provienen de regiones distintas de la Tabla Periódica, pero que comparten ciertos rasgos químicos (generalmente son tetravalentes), que les confieren sus particulares propiedades eléctricas. En la actualidad, el semiconductor más empleado es el silicio (Si), particularmente en la industria electrónica y de la computación. Los semiconductores pueden ser de dos tipos distintos, dependiendo de su respuesta al entorno físico en que se encuentren:

Semiconductores intrínsecos Están conformados por un único tipo de átomos, dispuestos en moléculas tetraédricas (o sea, de cuatro átomos con valencia de 4) y sus átomos unidos por enlaces covalentes. Esta configuración química impide el movimiento libre de los electrones alrededor de la molécula, excepto ante un aumento de temperatura: entonces los electrones toman parte de la energía disponible y “saltan”, dejando un espacio libre que se traduce como una carga positiva, que a su vez atraerá nuevos electrones. Dicho proceso se llama recombinación, y la cantidad de calor requerida para ello depende del elemento químico del que se trate.

Semiconductores extrínsecos Estos materiales permiten un proceso de dopaje, es decir, permiten que se incluyan en su configuración atómica algún tipo de impurezas. Dependiendo de estas impurezas, que pueden serpentavalentes o trivalentes, los materiales semiconductores se dividen en dos:

Semiconductores extrínsecos tipo N (donadores). En este tipo de materiales, los electrones superan en número a los huecos o portadores de carga libre ( “espacios” de carga positiva). Cuando se aplica una diferencia de potencial al material, los electrones libres se mueven hacia la izquierda del material y los huecos entonces hacia la derecha. Cuando los huecos llegan al extremo derecho, los electrones del circuito externo entran al semiconductor, y se produce la transmisión de corriente eléctrica.

Semiconductores extrínsecos tipo P (aceptores). En estos materiales, la impureza añadida, en lugar de aumentar los electrones disponibles, aumenta los huecos Así, se habla de material aceptor añadido, ya que hay mayor demanda de electrones que disponibilidad y cada “espacio” libre en donde debería ir un electrón sirve para facilitar el paso de la corriente.

Los materiales superconductores son aquellos que, bajo ciertas condiciones, tienen la capacidad de conducir corriente eléctrica sin ninguna resistencia ni pérdida de energía. Por ejemplo: Mercurio, Litio, Titanio, Cadmio. La resistencia de un superconductor, a diferencia de lo que ocurre en los conductores ordinarios como el oro y la plata, desciende bruscamente a cero cuando el material se enfría por debajo de su temperatura crítica: una corriente eléctrica que fluye en una espiral de cable superconductor puede circular indefinidamente sin fuente de alimentación.

Clasificación de los materiales superconductores Si se le aplica un campo magnético externo débil a un superconductor, este lo repele. Cuando el campo magnético es alto, el material deja de ser superconductor. Este campo crítico hace que un material deje de ser superconductor. Una clasificación adicional que se hace respecto a estos conductores es la que los divide según su capacidad de apantallar totalmente un campo magnético externo. Los superconductores de tipo I impiden completamente la penetración de campos magnéticos externos, mientras que los superconductores de tipo II son imperfectos en el sentido en que permiten que el campo magnético penetre en su interior.

Usos y aplicaciones de los materiales superconductores Hasta ahora, la principal utilidad de los superconductores es la producción de campos magnéticos muy intensos sin pérdida de energía. Así, tienen aplicaciones en medicina, en la construcción de aceleradores de partículas y el control de reactores nucleares, entre otras cosas. El desarrollo de los superconductores permite además avanzar en el estudio de computadoras más veloces y con mayor memoria, trenes de levitación magnética de alta velocidad y la posibilidad de generar energía eléctrica de manera más eficiente....


Similar Free PDFs