MODUL ENGINE SEPEDA MOTOR PDF

Title MODUL ENGINE SEPEDA MOTOR
Pages 59
File Size 1.8 MB
File Type PDF
Total Downloads 165
Total Views 553

Summary

BAB II ENGINE SEPEDA MOTOR A. PENDAHULUAN Sepeda motor, seperti juga mobil dan pesawat tenaga lainnya, memerlukan daya untuk bergerak, melawan hambatan udara, gesekan ban dan hambatan- hambatan lainnya. Untuk memungkinkan sebuah sepeda motor yang kita kendarai bergerak dan melaju di jalan raya, roda...


Description

BAB II ENGINE SEPEDA MOTOR A. PENDAHULUAN Sepeda motor, seperti juga mobil dan pesawat tenaga lainnya, memerlukan daya untuk bergerak, melawan hambatan udara, gesekan ban dan hambatanhambatan lainnya. Untuk memungkinkan sebuah sepeda motor yang kita kendarai bergerak dan melaju di jalan raya, roda sepeda motor tersebut harus mempunyai daya untuk bergerak dan untuk mengendarainya diperlukan engine. Engine merupakan alat untuk membangkitkan tenaga, ia disebut sebagai penggerak utama. Jadi engine atau motor disini berfungsi merubah energi panas dari ruang pembakaran ke energi mekanis dalam bentuk tenaga putar. Tenaga atau daya untuk menggerakkan kendaraan tersebut diperoleh dari panas hasil pembakaran bahan bakar. Jadi panas yang timbul karena adanya pembakaran itulah yang dipergunakan untuk menggerakkan kendaraan, dengan kata lain tekanan gas yang terbakar akan menimbulkan gerakan putaran pada sumbu engkol dari motor.

Gambar 2.1. Sepeda Motor B. KOMPONEN ENGINE Secara garis besar, komponen motor terbagi atas tiga bagian, yaitu: 1. Kepala Silinder (Cylinder Head) 2. Blok Silinder (Cylinder Block) 3. Bak Engkol (Crankcase) Ketiga komponen tersebut merupakan tulang punggung bagi engine sepeda motor, dan setiap bagiannya dapat dipisahkan satu sama lain. Selain komponen utama tersebut, engine juga memiliki komponen lain untuk melakukan kerjanya. Komponen tersebut adalah: 1. Torak (torak) 2. Cincin Torak (Cincin torak) 3. Pena Torak

4. Batang Penggerak 5. Poros Engkol

Gambar 2.2. Engine Sepeda Motor 4 Langkah dan 2 Langkah 1. Kepala Silinder Kepala silinder adalah bagian engine yang melekat dan menutup blok silinder, diantara keduanya dilapisi dengan gasket atau paking untuk menjaga agar tidak terjadi kebocoran kompresi. Kepala silinder juga dilengkapi dengan ruang bakar dan dudukan busi. Kepala silinder untuk motor 4 langkah dan 2 langkah sangat berbeda satu sama lain. Untuk kepala silinder motor 4 langkah dilengkapi dengan mekanik katup sedangkan kepala silinder motor 2 langkah tidak. Pada umumnya kepala silinder terbuat dari bahan aluminium paduan agar tahan terhadap tekanan dan suhu yang tinggi akibat pembakaran, juga Cincinan. Konstruksi kepala silinder dibuat sedemikian rupa dengan sirip-sirip guna membantu melepaskan panas ke udara bebas.

Gambar 2.3. Konstruksi Kepala Silinder 2. Blok Silinder Blok silinder adalah bagian engine dimana tempat torak bergerak, oleh karena itu blok silinder harus tahan terhadap gesekan dan panas yang tinggi. Umumnya untuk motor yang besar, blok silindernya terbuat dari besi tuang, dan pada motor kecil terbuat dari baha aluminium paduan yang bagian

dalamnya dipasangkan tabung (blok linier) dari bahan baja yaitu pada bagian tempat bergeraknya torak. Pada mulanya, ada yang merancang menjadi satu, sekarang sudah jarang ada. Sekarang dibuat terpisah berarti silinder liner dapat diganti bila keausannya sudah berlebihan. Bahannya dibuat dari besi tuang kelabu. Untuk motor-motor yang Cincinan seperti pada sepeda motor bahan ini dicampur dengan alumunium. Bahan blok dipilih agar memenuhi syarat-syarat pemakaian yaitu: Tahan terhadap suhu yang tinggi, dapat menghantarkan panas dengan baik, dan tahan terhadap gesekan.

Gambar 2.4. Konstruksi Blok Silinder Kontruksi luar blok silinder dibuat seperti sirip, ini untuk melepaskan panas akibat kerja mesin. Dengan adanya sirip-sirip tersebut, akan terjadi pendinginan terhadap mesin karena udara bisa mengalir diantara sirip-sirip. Sirip juga memperluas bidang pendinginan, sehingga penyerapan panas lebih besar dan suhu motor tidak terlampau tinggi dan sesuai dengan temperatur kerja. Persyaratan silinder yang baik adalah lubangnya bulat dan licin dari bawah ke atas, setiap dinding-dindingnya tidak terdapat goresan yang biasanya timbul dari pegas Cincin, toraknya tidak longgar (tidak melebihi apa yang telah ditentukan), tidak retak ataupun pecah-pecah. Meskipun telah mendapat pelumasan yang mencukupi tetapi keausan lubang silinder tetap tak dapat dihindari. Karenanya dalam jangka waktu yang lama keausan tersebut pasti terjadi. Keausan lubang silinder bisa saja terjadi secara tidak merata sehingga dapat berupa keovalan atau ketirusan. Masing-masing kerusakan tersebut harus diketahui untuk menentukan langkah perbaikannya. Cara mengukur keausan silinder: a) Lepaskan blok silinder b) Lepaskan torak

c) Ukur diameter lubang silinder dengan ”dial indikator” bagian yang diukur bagian atas, tengah dan bawah dari lubang silinder. Pengukuran dilakukan dua kali pada posisi menyilang. d) Hitung besarnya keovalan dan ketirusan. Bandingkan dengan ketentuan pada buku manual servisnya. Jika besarnya keovalan dan ketirusan melebihi batas-batas yang diijinkan lubang silinder harus diover size. Tahapan over size adalah 0,25 mm, 0,50 mm, 0,75 mm dan 1,00 mm. Over size pertama seharusnya 0,25 mm dengan keausan di bawah 0,25 mm dan seterusnya. Jika silinder sudah tidak mungkin di over size maka penyelesaiannya adalah dengan diganti pelapis silindernya.

Gambar 2.5. Cara Mengukur Diameter Silinder 3. Bak Mesin Bak mesin atau yang lebih dikenal dengan istilah “karter”. Bagian ini berfungsi sebagai pendukung dari bagian kepala silinder, blok silinder, poros engkol, gigi transmisi dan lain sebagainya. Bak mesin umumnya juga terbuat dari bahan logam aluminium paduan. Konstruksi bak mesin motor 4 langkah digunakan sebagai wadah minyak pelumas untuk melumasi bagian engkol dan bagian bawah torak, transmisi dan kopling. Sedangkan konstruksi bak mesin motor 2 langkah terdapat rongga yang dihubungkan langsung dengan karburator, rongga ini adalah sebagai saluran pemasukan bahan bakar. Selain itu, bak mesin motor 2 langkah digunakan untuk melumasi bagian transmisi dan kopling saja.

Gambar 2.6. Bak Mesin Sepeda Motor (Crankcase)

4. Torak Torak mempunyai bentuk seperti silinder. Bekerja dan bergerak secara translasi (gerak bolak-balik) di dalam silinder. Torak selalu menerima temperatur dan tekanan yang tinggi, bergerak dengan kecepatan tinggi dan terus menerus. Temperatur yang diterima oleh torak berbeda-beda dan pengaruh panas juga berbeda dari permukaan ke permukaan lainnya. Sesungguhnya yang terjadi adalah pemuaian udara panas sehingga tekanan tersebut mengandung tenaga yang sangat besar. Diameter torak dibuat lebih kecil daripada diameter lubang silindernya. Pada waktu mesin bekerja, kerenggangan itu dirapatkan oleh cincin torak yang mempunyai sifat pegas. Dan untuk menghindari terjadinya kemacetan saat torak memuai diwaktu mesin sedang panas, maka pelumasan diantara dinding silinder dengan torak dan cincin torak ini harus baik.

Gambar 2.7. Torak Sebenarnya torak tidak berbentuk silinder, melainkan diameter bagian atas umumnya lebih kecil daripada diameter bagian bawah. Hal ini untuk mengurangi pemuaian yang lebih banyak pada bagian atas, karena pada bagian itu memperoleh panas yang terbesar.

Gambar 2.8. Nama Bagian-bagian Torak Bagian atas torak pada mulanya dibuat rata. Namun, untuk meningkatkan efisiensi motor, terutama pada mesin dua langkah, permukaan torak dibuat cembung simetris dan cembung tetapi tidak simetris. Bentuk permukaan yang cembung gunanya untuk menyempurnakan pembilasan

campuran udara bahan bakar. Sekaligus, permukaan atas torak juga dirancang untuk melancarkan pembuangan gas sisa pembakaran. Torak dibuat dari campuran aluminium karena bahan ini dianggap Cincinan tetapi cukup memenuhi syarat-syarat : 1. Tahan terhadap temperatur tinggi. 2. Sanggup menahan tekanan yang bekerja padanya. 3. Mudah menghantarkan panas pada bagian sekitarnya 4. Cincinan dan kuat. Bagian atas torak pada mulanya dibuat rata. Namun, untuk meningkatkan efisiensi motor, terutama pada motor dua langkah, permukaan torak dibuat cembung simetris dan bentuk deflektor. Bentuk permukaan kepala torak gunanya untuk menyempurnakan pembilasan campuran udara dan bahan bakar. Sekaligus, permukaan atas torak juga dirancang untuk melancarkan pembuangan gas sisa pembakaran.

Gambar 2.9. Macam-macam Bentuk Kepala Torak 5. Cincin Torak Cincin torak adalah komponen yang terpasang pada torak. Cincin tersebut terpasang longgar pada alur Cincin. Fungsi cincin torak adalah: a) Mempertahankan kerapatan antara torak dengan dinding silinder agar tidak terjadi kebocoran gas dari ruang bakar ke dalam bak mesin. Untuk itu cincin torak harus mempunyai sifat kepegasan yang kuat dalam penekanan ke dinding silinder. b) Membantu pengontrolan lapisan minyak pelumas pada dinding silinder. Dari fungsi tersebut diatas, jelaslah bahwa cincin torak harus dibuat dari bahan yang memenuhi syarat. Pada umumnya bahan pembuatan cincin torak ini adalah besi tuang dan ada juga dari bahan baja paduan dengan tambahan bahan-bahan lain sebagai lapisan pada bagian permukaan yang bergesekan untuk mempertinggi ketahanan terhadap keausan. Melihat fungsi cincin torak, maka cincin torak dapat dibedakan menjadi dua macam yaitu:

a) Cincin Kompresi. Cincin kompresi dipasang pada bagian atas, sehingga berhubungan langsung dengan takanan kompresi. b) Cincin Pelumasan. Dipasang pada deretan bagian bawah dan bentuknya sedemikian rupa sehingga dengan mudah membawa minyak pelumas untuk melumasi dinding silinder Umumnya motor 4 langkah menggunakan 3 buah cincin dengan tugas masing-masing yaitu:  2 buah sebagai cincin kompresi  1 buah sebagai cincin pelumasan.

Gambar 2.10. Cincin Torak (Torak Ring) Cincin torak motor dua langkah sedikit berbeda dangan Cincin torak motor empat langkah. Cincin torak mesin dua langkah biasanya hanya 2 buah, yang keduanya berfungsi sebagai Cincin kompresi. Pemasangan Cincin torak dapat dilakukan tanpa alat bantu tetapi harus hati-hati karena Cincin torak mudah patah. Kerusakan-kerusakan yang terjadi pada Cincin torak dua langkah dapat berakibat: 1. Dinding silinder bagian dalam cepat aus 2. Mesin tidak stasioner 3. Suara mesin pincang 4. Tenaga mesin kurang 5. Mesin sulit dihidupkan 6. Kompresi mesin lemah

Gambar 2.11. Susunan Pemasangan cincin Torak

6. Pena Torak Pena torak berfungsi untuk mengikat torak terhadap batang penggerak. Selain itu, pena torak juga berfungsi sebagai pemindah tenaga dari torak ke batang penggerak agar gerak bolak-balik dari torak dapat diubah menjadi gerak berputar pada poros engkol. Walaupun ringan bentuknya tetapi pena torak dibuat dari bahan baja paduan yang bermutu tinggi agar tahan terhadap beban yang sangat besar.

Gambar 2.12. Pena Torak Untuk meneruskan tenaga dari torak ke batang penggerak, pena torak harus di ikat dengan kuat antara torak dan batang penggerak. Ditinjau dari pemasangannya pada torak, pena torak dapat dibedakan menjadi beberapa tipe yaitu: a. Tipe Fixed b. Tipe Full Floating c. Tipe Bolted d. Tipe Press-Fit

Gambar 2.13. Tipe Pena Torak 7. Batang Penggerak Batang penggerak sering juga disebut dengan connecting rood, batang penggerak adalah suatu bagian yang menghubungkan torak dengan poros engkol. Jadi batang penggerak meneruskan gerakan torak ke poros engkol. Dimana gerak bolak-balik torak dalam ruang silinder diteruskan oleh batang

penggerak menjadi gerak putaran (rotary) pada poros engkol. Ini berarti jika torak bergerak naik turun, poros engkol akan berputar. Ujung sebelah atas di mana ada pena torak dinamakan ujung kecil (small end) dan ujung bagian bawahnya dimana ada poros engkol disebut ujung besar (big end). Di ujung kecil batang penggerak ada yang dilengkapi dengan memakai bantalan peluru dan dilengkapi lagi dengan logam perunggu atau bush boaring (namanya dalam istilah di toko penjualan komponen kendaraan bermotor). Ujung besarnya dihubungkan dengan penyeimbang poros engkol melalui king pin dan bantalan peluru. Pada umumnya panjang batang penggerak kira-kira sebesar dua kali langkah gerak torak. Batang penggerak dibuat dari bahan baja atau besi tuang.

Gambar 2.14. Batang Penggerak 8. Poros Engkol Fungsi poros engkol adalah mengubah gerakan bolak balik torak menjadi gerakan putar melalui pena torak dan batang penggerak dan meneruskan gaya kopel (momen gaya) yang dihasilkan motor ke alat pemindah tenaga sampai ke roda.

Gambar 2.15. Poros Engkol Poros engkol umumnya ditahan dengan bantalan luncur yang ditetapkan pada ruang engkol. Bantalan poros engkol biasa disebut bantalan utama. Jenis poros engkol yang dipergunakan pada mesin sepeda motor adalah:

1. Jenis built up, digunakan pada motor jenis kecil yang mempunyai jumlah silinder satu atau dua.

Gambar 2.16. Poros Engkol Tipe Bult Up 2. Jenis ”one piece”, digunakan pada motor jenis besar yang mempunyai jumlah silinder banyak

Gambar 2.17. Poros Engkol Tipe One Piece 9. Roda Gila (Fly Wheel) Setelah berakhirnya langkah kerja, poros engkol harus tetap berputar untuk menjamin agar torak dapat mencapai langkah-langkah berikutnya. Dapat berputarnya poros engkol secara terus menerus itu, adalah akibat adanya tenaga gerak (energi kinetis) yang disimpan pada roda gilanya, sebagai kelebihan pada saat langkah kerja. Roda gila ini dalam pembuatannya harus dibalansir dengan teliti agar putaran mesin rata betul, tanpa getaran-getaran. Pada engine sepeda motor, umumnya roda gila berfungsi juga sebagai rotor generator.

Gambar 2.18. Roda Gila

C. SISTEM BAHAN BAKAR Secara umum sistem bahan bakar pada sepeda motor berfungsi untuk menyediakan bahan bakar, melakukan proses pencampuran bahan bakar dan udara dengan perbandingan yang tepat, kemudian menyalurkan campuran tersebut ke dalam silinder dalam jumlah volume yang tepat sesuai kebutuhan putaran mesin. Cara untuk melakukan penyaluran bahan bakarnya dapat dibedakan menjadi dua, yaitu sistem penyaluran bahan bakar dengan sendirinya (karena berat gravitasi) dan sistem penyaluran bahan bakar dengan tekanan. Sistem penyaluran bahan bakar dengan sendiri diterapkan pada sepeda mesin yang masih menggunakan karburator (sistem bahan bakar konvensional). Pada sistem ini tidak diperlukan pompa bahan bakar dan penempatan tangki bahan bakar biasanya lebih tinggi dari karburator. Sedangkan sistem penyaluran bahan bakar dengan tekanan terdapat pada sepeda mesin yang menggunakan sistem bahan bakar injeksi atau EFI (electronic fuel injection). Dalam sistem ini, peran karburator yang terdapat pada sistem bahan bakar konvensional diganti oleh injektor yang proses kerjanya dikontrol oleh unit pengontrol elektronik atau dikenal ECU (electronic control unit) atau kadangkala ECM (electronic/engine control module). 1. Sistem Bahan Bakar Konvensional (Karburator) Sistem bahan bakar konvensional merupakan sistem bahan bakar yang mengunakan kaburator untuk melakukan proses pencampuran bensin dengan udara sebelum disalurkan ke ruang bakar. Sebagian besar sepeda motot saat ini masih menggunakan sistem ini. Komponen utama dari sistem bahan bakar terdiri dari: tangki dan karburator. Sepeda mesin yang menggunakan sistem bahan bakar konvensional umumnya tidak dilengkapi dengan pompa bensin karena sistem penyalurannya tidak menggunakan tekanan tapi dengan penyaluran sendiri berdasarkan berat gravitasi. a. Tangki Bahan Bakar Tangki merupakan tempat persediaan bahan bakar. Pada sepeda mesin yang mesinnya di bawah maka tangki bahan bakar ditempatkan di belakang, sedangkan mobil yang mesinnya di belakang biasanya tangki bahan bakar ditempatkan di bagian depan. Kapasitas tangki dibuat bermacam-macam tergantung dari besar kecilnya mesin. Bahan tangki umumnya dibuat dari plat baja dengan dilapisi pada bagian dalam dengan logam yang tidak mudah berkarat. Namun demikian terdapat juga tangki bensin yang terbuat dari aluminium. Tangki bahan bakar dilengkapi dengan pelampung dan sebuah tahanan geser untuk keperluan alat pengukur jumlah minyak yang ada di dalam tangki.

Gambar 2.19 Contoh struktur tangki sepeda motor Struktur tangki terdiri dari; a. Tank cap (penutup tangki); berfungsi sebagai lubang masuknya bensin, pelindung debu dan air, lubang pernafasan udara, dan mejaga agar bensin tidak tumpah jika sepeda mesin terbalik. b. Filler tube; berfungsi menjaga melimpahnya bensin pada saat ada goncangan (jika kondisi panas, bensin akan memuai). c. Fuel cock (kran bensin); berfungsi untuk membuka dan menutup aliran bensin dari tangki dan sebagai penyaring kotoran/partikel debu. Terdapat dua tipe kran bensin, yaitu tipe standar dan tipe vakum. Tipe standar adalah kran bensin yang pengoperasiannya dialakukan secara manual.

Gambar 2.20 Kran bensin tipe standar Ada tiga posisi yaitu OFF, RES dan ON. Jika diputar ke posisi “ÓFF” akan menutup aliran bensin dari tangkinya dan posisi ini biasanya digunakan untuk pemberhentian yang lama. Posisi RES untuk pengendaraan pada tangki cadangan dan posisi ON untuk pengendaraan yang normal. Tipe vakum adalah tipe otomatis yang akan terbuka jika mesin hidup dan tertutup ketika mesin mati. Kran tipe vakum mempunyai diapragma yang dapat digerakkan oleh hisapan dari mesin. Pada saat mesin hidup, diapragma menerima hisapan dan membuka jalur bensin, dan pada saat mesin mati akan menutup jalur bensin (OFF).

Terdapat 4 jalur dalam kran tipe vakum, yaitu OFF, ON, RES dan PRI. Fungsi OFF, ON dan RES sama seperti pada kran standar. Sedangkan fungsi PRI adalah akan mengalirkan langsung bensin ke filter cup (wadah saringan) tanpa ke diapragma dulu. Jika telah mengisi tangki bensin yang kosong, usahakan memutar kran bensin ke posisi ON.

Gambar 2.21 Kran bensin tipe vakum d. Damper locating (peredam); berupa karet yang berfungsi untuk meredam posisi tangki saat sepeda mesin berjalan. b. Slang Bahan Bakar Slang bahan bakar berfungsi sebagai saluran perpindahan bahan bakar dari tangki ke karburator. Pada sebagian sepeda mesin untuk meningkatkan kualitas dan kebersihan bahan bakar, dipasang saringan tambahan yang ditempatkan pada slang bahan bakar. Dalam pemasangan slang bahan bakar, tanda panah harus sesuai dengan arah aliran bahan bakar. c. Karburator Fungsi dari karburator adalah:  Mengatur perbandingan campuran antara udara dan bahan bakar.  Mengubah campuran tersebut menjadi kabut.  Menambah atau mengurangi jumlah campuran tersebut sesuai dengan kecepatan dan beban mesin yang berubah-ubah. Sejak sebuah mesin dihidupkan sampai mesin tersebut berjalan pada kondisi yang stabil perbandingan campuran mengalami bebarapa kali perubahan. Perkiraan perbandingan campuran dengan keadaan operasional mesin telah dijelaskan pada bagian sebelumnya, yaitu bagian C. Untuk melakukan perubahan perbandingan sesuai dengan kondisi mesin tersebut maka terdapat beberapa sistem dalam karburator. Cara kerja masing-masing sistem dalam karbuartor akan dibahas pada bagian selanjutnya.

1) Prinsip Kerja Karburator Prinsip kerja karburator berdasarkan hukum-hukum fisika seperti: Qontinuitas dan Bernauli. Apabila suatu fluida mengalir melalui suatu tabung, maka banyaknya fluida atau debit aliran (Q) adalah Q = A. V = Konstan Dimana: Q = Debit aliran (m3/detik) A = Luas penampang tabung (m2) V = Kecepatan aliran (m/detik) Jumlah tekanan (P) pada sepanjang tabung alir (yang diameternya sama) juga akan selalu tetap. Jika terdapat bagian dari tabung alir/pipa yang diameternya diperkecil maka dapat diperoleh kesimpulan bahwa bila campuran bensin dan udara yang mengalir melalui suatu tabung yang luas penampangnya mengecil (diameternya diperkecil) maka kecepatannya akan bertambah sedangkan tekanannya akan menurun. Prinsip hukum di atas tersebut dipakai untuk mengalirkan bensin dari ruang pelampung karburator dengan memperkecil suatu diameter dalam karburator. Pengecilan diameter atau penyempitan saluran ini disebut dengan venturi. 2) Tipe Karburator Berdasarkan konstruksinya, karburator pada sepeda mesin dapat dibedakan menjadi tiga, yaitu: 1) Karburator dengan venturi tetap (fixed venturi) Karburator tipe ini merupakan karburator yang diameter venturinya tidak bisa dirubah-rubah lagi. Besarnya aliran udaranya tergantung pada perubahan throttle butterfly (katup throttle/katup gas). Pada tipe ini biasanya terdapat pilot jet untuk kecepatan idle/langsam, sistem kecepatan utama sekunder untuk memenuhi proses pencampuran udara bahan bakar yang tepat pada setiap kecepatan. Terdapat juga sistem akselerasi atau percepatan untuk mengantisipasi saat mesin di gas dengan tiba-tiba. Semua sistem tambahan terse...


Similar Free PDFs