Negative Feedback Amplifier PDF

Title Negative Feedback Amplifier
Author Kanish R
Course Analog Circuits 1
Institution Rajalakshmi Engineering College
Pages 55
File Size 2.2 MB
File Type PDF
Total Downloads 1
Total Views 136

Summary

It Broadly covers the basics of Feedback amplifiers...


Description

UNIT 4 FEEDBACK AMPLIFIERS PART I

Analog Electronic Circuit I

Outline         

Int Intro ro roduc duc duction tion to F Feed eed eedbac bac back k Fee Feedb db dbaack Ampl mpliifier – Posi Positive tive & Neg Negat at ative ive Adv dvan an anttages ges/Disa /Disa /Disadvan dvan dvantages tages of Neg Negat at ative ive Fe Feed ed edbback Bas Basic ic Fee Feedba dba dback ck Conc Concept ept Clas Classif sif sification ication of Am Ampli pli plifiers fiers Se Seri ri ries es – Shu Shun nt Conf Confiiguration Shu Shun nt – Serie riess Conf Confiiguration Se Seri ri ries es - Ser Seriies Co Conf nf nfiigur guration ation Shu Shun nt – Shu hunt nt Conf onfiigur gurati ati ation on

Introduction to Feedback  





Feedback is used in virtually all amplifier system. Invented in 1928 by Harold Black – engineer in Western Electric Company  methods to stabilize the gain of amplifier for use in telephone repeaters. In feedback system, a signal that is proportional to the output is fed back to the input and combined with the input signal to produce a desired system response. However, unintentional and undesired system response may be produced.

Feedback Amplifier 

Feedback is a technique where a proportion of the output of a system (amplifier) is fed back and recombined with input

input

A

output

b 

There are 2 types of feedback amplifier: Positive feedback  Negative feedback 

Positive Feedback 

Positive feedback is the process when the output is added to the input, amplified again, and this process continues.

A

input

output

+

b 

Positive feedback is used in the design of oscillator and other application.

Positive Feedback - Example 

In a PA system get feedback when you put the microphone in front of a speaker and the sound gets uncontrollably loud (you have probably heard this unpleasant effect).

Negative Feedback 

Negative feedback is when the output is subtracted from the input.

input

A

output

b 

The use of negative feedback reduces the gain. Part of the output signal is taken back to the input with a negative sign.

Negative Feedback - Example 

Speed control If the car starts to speed up above the desired setpoint speed, negative feedback causes the throttle to close, thereby reducing speed; similarly, if the car slows, negative feedback acts to open the throttle

Feedback Amplifier - Concept

Basic structure of a single - loop feedback amplifier

Advantages of Negative Feedback 1. 2.

3. 4. 5.

Gain Sensitivity – variations in gain is reduced. Bandwidth Extension – larger than that of basic amplified. Noise Sensitivity – may increase S-N ratio. Reduction of Nonlinear Distortion Control of Impedance Levels – input and output impedances can be increased or decreased.

Disadvantages of Negative Feedback 1.

2.

Circuit Gain – overall amplifier gain is reduced compared to that of basic amplifier. Stability – possibility that feedback circuit will become unstable and oscillate at high frequencies.

Basic Feedback Concept

Basic configuration of a feedback amplifier

Basic Feedback Concept 



 

The output signal is: So  AS where A is the amplification factor Feedback signal is S fb  b S o where ß is the feedback transfer function At summing node: S  Si  S fb Closed-loop transfer function or gain is S A Af  o  S i 1  bA A 1 if b A  1 then A f   bA b

Classification of Amplifiers Classify amplifiers into 4 basic categories based on their input (parameter to be amplified; voltage or current) & output signal relationships:    

Voltage amplifier (series-shunt) Current amplifier (shunt-series) Transconductance amplifier (series-series) Transresistance amplifier (shunt-shunt)

Feedback Configuration Series: connecting the feedback signal in series with the input signal voltage.

Shunt: connecting the feedback signal in shunt (parallel) with an input current source

Series - Shunt Configuration

Avf 

Av 1  b v Av

Series - Shunt Configuration if

Ro  RL

then the output of feedback network is an open circuit; Output voltage is:

Vo  AvV feedback voltage is:

V fb  b vVo

where ßv is closed-loop voltage transfer function

By neglecting Rs due to Ri  Rs ; error voltage is:

V  Vi  V fb

Vo Av  Avf   Vi 1  b v Av

Series - Shunt Configuration Input Resistance, Rif

Output Resistance, Rof

Vi  V  V fb  V  b v ( AvV ) Or Vi V  (1  bv Av )  Input current V Vi Ii    Ri Ri (1  b v Av )

Assume Vi=0 and Vx applied to output terminal. V  V fb  V  bvVx  0



Rif with feedback

Rif 

Vi  Ri (1  b v Av ) Ii

Or V  b vVx  Input current V  AvV Vx (1  b v Av ) Ii  x  Ro Ro  Rof with feedback V Ro Rof  x  I x (1  b v Av )

Series - Shunt Configuration 



Series input connection increase input resistance – avoid loading effects on the input signal source. Shunt output connection decrease the output resistance - avoid loading effects on the output signal when output load is connected.

Equivalent circuit of shunt - series feedback circuit or voltage amplifier

Series - Shunt Configuration 

Non-inverting op-amp is an example of the seriesshunt configuration. For ideal non-inverting opamp amplifier

Vo  R2  Avf   1   Vi  R1  Feedback transfer function;

b

1  R2   1   R1  

Series - Shunt Configuration (ok) V o  AvV  V   V i  V fb  R1 V fb    R1  R 2 V Avf  o  Vi 1 

 V o  Av Av  R1   R1  R 2

 R1 V i  V    R1  R 2

Equivalent circuit

R if 



Av 1  b Av

  

 AvV Vo  V   R   1  2 R1 

Vi Vi   R i (1  b Av ) I i V / R i

  

Series - Shunt Configuration Example: Calculate the feedback amplifier gain of the circuit below for op-amp gain, A=100,000; R1=200 Ω and R2=1.8 kΩ.

Solution: Avf = 9.999 or 10

Series - Shunt Configuration 

Basic emitter-follower and source-follower circuit are examples of discrete-circuit series-shunt feedback topologies. • vi is the input signal • error signal is baseemitter/gate-source voltage. • feedback voltage = output voltage  feedback transfer function, ßv = 1

Series - Shunt Configuration 

Small-signal voltage gain: 1  RE   g m R E r V re  Avf  o     RE Vi  1 1    g m  RE 1  re   r



Open-loop voltage gain:



Closed-loop input resistance:



Output resistance:

1  R Av    g m R E  E re  r 

 1   Rif  r  (1 g m r )RE  r 1   g m RE      r Rof  R E

r  (1  g m r )

RE 1  1    gm  RE  r 

Shunt – Series Configuration

Aif 

Ai 1  b i Ai

Shunt – Series Configuration 









Basic current amplifier with input resistance, Ri and an open-loop current gain, Ai. Current IE is the difference between input signal current and feedback current. Feedback circuit samples the output current – provide feedback signal in shunt with signal current. Increase in output current – increase feedback current – decrease error current. Smaller error current – small output current – stabilize output signal.

Shunt – Series Configuration if

Ri  Rs

then

I i  I

then the output is a short circuit; output current is:

I o  Ai I  feedback current is:

I fb  b i I o

where ßi is closed-loop current transfer function

Input signal current:

I i  I   I fb  Aif 

Io Ai  I i 1  b i Ai

Shunt – Series Configuration Input Resistance, Rif

Output Resistance, Rof

I i  I   I fb  I   b i ( Ai I  ) Or Ii I  (1  b i Ai )  Input current Ii Ri Vi  I  Ri  (1  bi Ai )

Assume Ii=0 and Ix applied to output terminal. I   I fb  I   b i I x  0



I   b i I x V x  ( I x Ai I  ) Ro

Vx  I x  Ai ( bi I x )Ro Vx  I x (1  bi Ai ) Ro

Rif with feedback

V Ri Rif  i  I i (1  b i Ai )



Rof with feedback Rof 

Vx  Ro 1  bi Ai  Ix

Shunt - Series Configuration 



Shunt input connection decrease input resistance – avoid loading effects on the input signal current source. Series output connection increase the output resistance - avoid loading effects on the output signal due to load connected to the amplifier output.

Equivalent circuit of shunt - series feedback circuit or voltage amplifier

Shunt - Series Configuration  

Op-amp current amplifier – shunt-series configuration. Ii’ from equivalent source of Ii and Rs. • I is negligible and Rs>>Ri; I i  I i '  I fb • assume V1 virtually ground; Vo   I fb RF   I i RF • Current I1: I 1  Vo / R1 • Output current:   R I o  I fb  I1  I i 1  F  R1  • Ideal current gain:   R  I Ai  o  1  F  Ii  R1 

Shunt - Series Configuration 

Ai is open-loop current gain I   I i ' I fb  I i  I fb

and I o  Ai I   Ai ( I i  I fb )  Assume V1 is virtually ground: Vo   I fb RF 

Closed-loop current gain: I Ai Aif  o  Ai Ii 1   RF  1   R1  



I1 current:

I1  

Output current

R Vo  I fb  F R1  R1

R Io  I fb  I1  I fb  I fb  F  R1

  

  

Shunt - Series Configuration 

Common-base circuit is example of discrete shuntseries configuration. I Io Ii



I

Amplifier gain: I o / I   Ai  b

Io

RL

Ifb Ii

Closed-loop current gain: Aif 

Io Ai b   I i 1  b 1  Ai

RL

Shunt - Series Configuration 

Common-base circuit with RE and RC

Ii RC

Ii RE

Io

RE

V-

V+

Aif 

Ai Io g m r   Ii   r  r   1     g m r 1     Ai  RE   RE 

Io

RC

Series – Series Configuration

Agf 

Ag 1  b g Ag

Series – Series Configuration 





The feedback samples a portion of the output current and converts it to a voltage – voltage-tocurrent amplifier. The circuit consist of a basic amplifier that converts the error voltage to an output current with a gain factor, Ag and that has an input resistance, Ri. The feedback circuit samples the output current and produces a feedback voltage, Vfb, which is in series with the input voltage, Vi.

Series – Series Configuration (ok) Assume the output is a short circuit, the output current:

I o  AgV feedback voltage is:

V fb  b z I o

where ßz is a resistance feedback transfer function

Input signal voltage (neglect Rs=∞):

Vi  V  V fb Ag Io  Agf   Vi 1  b z Ag

Series – Series Configuration Input Resistance, Rif

Output Resistance, Rof

Vi  V  V fb  V  b z ( AgV ) Or Vi V  (1  b z Ag )  Input current V Vi Ii    Ri Ri (1  b z Ag )

Assume Ii=0 and Ix applied to output terminal. I   I fb  I   b z I x  0



I   bz I x Vx  ( I x  Ag I  ) Ro



Rif with feedback

V Rif  i  Ri (1  b z Ag ) Ii



V x  I x  Ag (  b z I x ) Ro 

Vx  I x (1  b z Ag ) Ro Rof with feedback Rof 

Vx  Ro 1  bz Ag  Ix

Series – Series Configuration  

Series input connection increase input resistance Series output connection increase the output resistance

Equivalent circuit of series - series feedback circuit or voltage amplifier

Series – Series Configuration 



The series output connection samples the output current  feedback voltage is a function of output current. Assume ideal op-amp circuit and neglect transistor basecurrent:

Vi  V fb  I o RE Io 1 Agf   Vi RE

Series – Series Configuration 

Assume IEIC and Ri

Io 

V fb

 gmr I b  gmr AgV

RE V  Vi  Vfb  Vi  Io RE Io  gm r Ag Vi  Io RE 

gmr Ag Io Agf   Vi 1  gmr Ag RE

Series – Series Configuration

Series – Series Configuration  RC   Io  ( gmV )  RC  RL    V  Vfb    gmV  RE   r  1   Vi  V Vfb  V 1    gm  RE      r  RC    gm I  RC  RL  Agf  o  Vi  1 1   g m RE   r

Shunt – Shunt Configuration

Azf 

Az 1  b z Az

Shunt – Shunt Configuration 





The feedback samples a portion of the output voltage and converts it to a current – current-tovoltage amplifier. The circuit consist of a basic amplifier that converts the error current to an output voltage with a gain factor, Az and that has an input resistance, Ri. The feedback circuit samples the output voltage and produces a feedback current, Ifb, which is in shunt with the input current, Ii.

Shunt – Shunt Configuration Assume the output is a open circuit, the output voltage:

Vo  Az I  feedback voltage is: I fb  b gVo where ßg is a conductance feedback transfer function Input signal voltage (neglect Rs=∞):

I i  I   I fb Vo Az  Azf   Ii 1  b g Az

Shunt – Shunt Configuration Input Resistance, Rif

Output Resistance, Rof

Ii  I   I fb  I   b g ( Az I  ) Or Ii I  (1  b g Az )  Input current I i Ri Vi  I Ri  (1  b g Az )

Assume Vi=0 and Vx applied to output terminal. V  V fb  V  b gVx  0 Or V   b gVx



Rif with feedback

Rif 

Vi Ri  I i (1 b g Az )





Input current V  AzV V x (1 b g Az )  Ii  x Ro Ro Rof with feedback V Ro Rof  x  I x (1  b g Az )

Shunt – Shunt Configuration

Equivalent circuit of shunt - shunt feedback circuit or voltage amplifier

Shunt – Shunt Configuration 

Basic inverting op-amp circuit is an example of shuntshunt configuration. Vo  I fb R 2 where I fb  I i Azf 





Vo   R2 Ii

Input current splits between feedback current and error current. Shunt output connection samples the output voltage  feedback current is function of output voltage.

Shunt – Shunt Configuration 

Az is open-loop transresistance gain factor (-ve value)

Vo  Az I   Az  Ii  I fb  where I fb  Vo / R2  Az Vo Azf   Az Ii 1 R2

Shunt – Shunt Configuration

Shunt – Shunt Configuration Vo V V  g mV  o   0 RC RF Ii 

V V  Vo  r RF

 1 1  1 1   1  V   Ii  o   0    g m    Vo   R F  RF   RC R F  r R F    1    g m   R V F   Azf  o  Ii  1 1  1 1   1  1          g m    RF   RC RF   r RF   RF 

Shunt – Shunt Configuration 

Open-loop transresistance gain factor Az is found by setting RF=  g m  Az 



 1  1    RC  r

Multiply by (rπRC) Azf 

Vo Ii

Assume RC...


Similar Free PDFs