Pembangkit Listrik Tenaga Surya (PLTS) Energi Terbarukan PDF

Title Pembangkit Listrik Tenaga Surya (PLTS) Energi Terbarukan
Author J. Hendra Riko
Pages 17
File Size 201.4 KB
File Type PDF
Total Downloads 85
Total Views 465

Summary

MAKALAH TEKNOLOGI ENERGI DAN LINGKUNGAN ENERGI TERBARUKAN (PLTS) Oleh: J Hendra Riko Nim: 201231005 UNIVERSITAS KATOLIK WIDYA KARYA FAKULTAS TEKNIK JURUSAN TEKNIK MESIN NOVEMBER 2014 KATA PENGANTAR Puji Syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa yang telah memberikan Rahmat serta karunia...


Description

MAKALAH TEKNOLOGI ENERGI DAN LINGKUNGAN ENERGI TERBARUKAN (PLTS) Oleh: J Hendra Riko Nim: 201231005

UNIVERSITAS KATOLIK WIDYA KARYA FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

NOVEMBER 2014

KATA PENGANTAR

Puji Syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa yang telah memberikan Rahmat serta karunia-Nya kepada penulis sehingga penulis bisa menyelesaikan makalah ini dengan waktu yang telah berikan dan bisa menyelesaikan makalah ini dengan penuh kemudahan. Makalah ini di buat dengan tujuan supaya bisa mengenal elemen pada panel surya serta bisa mengetahui keuntungan dan kerugiannya serta perbandingannya denger energy yang dihasilkan misalnya seperti: PLN, Generator listik, PLTA dll. Dan yang pastinya kita lebih bisa lebih jauh dan lebih baik pengenalannya untuk menambah ilmu pengetahuan baik dari segi cara kerja, serta pengaplikasiannya dalam keidupan sehari-hari. Penulis menyadari bahwa makalah ini masih banyak terdapat kekurangan, karena keterbatasan pengetahuan yang kami miliki. Oleh sebab itu kritik dan saran akan penulis terima demi perbaikan untuk dikemudian hari. Semoga makalah ini dapat berguna baik bagi penulis sendiri maupun bagi para pembaca sebagai tambahan wawasan .

Malang,…………..2014

penulis

Daftar Isi

Halaman Judul Kata Pengantar Daftar Isi BAB I PENDAHULUAN 1.1 Latar Belakang………………………………………………………………………

3

1.2 Tujuan……………………………………………………………………………….

4

1.3 Rumusan Masalah…………………………………………………………………..

5

BAB II PEMBAHASAN

2.1 Sel Surya (Fotovoltaik)………………………………………………………………

6

2.2 Struktur Sel Surya……………………………………………………………………

7

2.3 Cara Kerja Sel Surya…………………………………………………………………

9

2.4 Perbandingan Penggunaan Sel Surya Dengan Energi Lain………………………….

11

2.5 Sistem PLTS…………………………………………………………………………. 14 BAB III PENUTUP 3.1 Kesimpulan…………………………………………………………………………… 16 3.2 Saran………………………………………………………………………………….. 16 Daftar Pustaka

BAB I PENDAHULUAN 1.1 latar belakang Energi merupakan salah satu kebutuhan utama dalam kehidupan manusia. Peningkatan kebutuhan energi dapat merupakan indikator peningkatan kemakmuran, namun bersamaan dengan itu juga menimbulkan masalah dalam usaha penyediaannya. Pemakaian energi surya di Indonesia mempunyai prospek yang sangat baik, mengingat bahwa secara geografis sebagai negara tropis, melintang garis katulistiwa berpotensi energi surya yang cukup baik. Pemanfaatan Tenaga Surya melalui konversi Photovoltaic telah banyak diterapkan antara lain, penerapan sistem individu dan sistem hybrid yaitu sistem penggabungan antara sumber energi konvensional dengan sumber energi terbarukan. Pada kondisi beban rendah sistem bekerja dengan sistem inverter dan baterai. Jika beban terus bertambah hingga mencapai kapasitas yang terdapat pada inverter atau tegangan baterai semakin rendah, maka sistem kontrol akan segera mengoperasikan genset, maka genset akan berfungsi sebagai AC/DC konverter untuk pengisian baterai, dan dapat beroperasi secara paralel untuk memenuhi kebutuhan beban tersebut. Dengan demikian, kondisi pembebanan diesel menjadi sangat efisien karena hanya beroperasi pada beban tertentu. 1.2 Tujuan Adapun Tujuannya Adalah Sbb : 1. Agar Bisa Mengetahui Komponen Pembangkit Listrik Tenaga Surya 2. Agar Bisa Mengetahui Cara Kerja Pada Sel Surya (Fotovoltaik) 3. Agar Bisa Memahami Dan Mengembangkan Cara Kerja Yang Evektif Pada Panel Surya 4. Supaya Dapat Perbandingan Penggunaan Sel Surya Dengan Energi Lain 5. Agar Bisa Mengenar Dan Mengetahui Sistem PLTS

1.3 Rumusan Masalah 1. Apa Yang Dimaksud Dengan Sel Surya (Fotovoltaik) 2. Bagaimana Struktur Sel Surya 3. Bagaimana Cara Kerja Sel Surya 4. Apa Perbandingan Penggunaan Sel Surya Dengan Energi Lain 5. Apa Yang Dimaksud Serta Pengertian Sistem PLTS

BAB II PEMBAHASAN 2.1 Sel Surya (Fotovoltaik) sel surya atau juga sering disebut fotovoltaik adalah divais yang mampu mengkonversi langsung cahaya matahari menjadi listrik. Sel surya bisa disebut sebagai pemeran utama untuk memaksimalkan potensi sangat besar energi cahaya matahari yang sampai kebumi, walaupun selain dipergunakan untuk menghasilkan listrik, energi dari matahari juga bisa dimaksimalkan energi panasnya melalui sistem solar thermal. Sel surya dapat dianalogikan sebagai divais dengan dua terminal atau sambungan, dimana saat kondisi gelap atau tidak cukup cahaya berfungsi seperti dioda, dan saat disinari dengan cahaya matahari dapat menghasilkan tegangan. Ketika disinari, umumnya satu sel surya komersial menghasilkan tegangan dc sebesar 0,5 sampai 1 volt, dan arus short-circuit dalam skala milliampere per cm2. Besar tegangan dan arus ini tidak cukup untuk berbagai aplikasi, sehingga umumnya sejumlah sel surya disusun secara seri membentuk modul surya. Satu modul surya biasanya terdiri dari 28-36 sel surya, dan total menghasilkan tegangan dc sebesar 12 V dalam kondisi penyinaran standar (Air Mass 1.5). Modul surya tersebut bisa digabungkan secara paralel atau seri untuk memperbesar total tegangan dan arus outputnya sesuai dengan daya yang dibutuhkan untuk aplikasi tertentu. Gambar dibawah menunjukan ilustrasi dari modul surya.

Modul surya biasanya terdiri dari 28-36 sel surya yang dirangkai seri untuk memperbesar total daya output. (Gambar :”The Physics of Solar Cell”, Jenny Nelson) 2.2 Struktur Sel Surya Sesuai dengan perkembangan sains dan teknologi, jenis-jenis teknologi sel surya pun berkembang dengan berbagai inovasi. Ada yang disebut sel surya generasi satu, dua, tiga dan empat, dengan struktur atau bagian-bagian penyusun sel yang berbeda pula (Jenis-jenis teknologi surya akan dibahas di tulisan “Sel Surya : Jenis-jenis teknologi”). Dalam tulisan ini akan dibahas struktur dan cara kerja dari sel surya yang umum berada dipasaran saat ini yaitu sel surya berbasis material silikon yang juga secara umum mencakup struktur dan cara kerja sel surya generasi pertama (sel surya silikon) dan kedua (thin film/lapisan tipis).

Struktur dari sel surya komersial yang menggunakan material silikon sebagai semikonduktor. (Gambar:HowStuffWorks) Gambar diatas menunjukan ilustrasi sel surya dan juga bagian-bagiannya. Secara umum terdiri dari : 1. Substrat/Metal backing Substrat adalah material yang menopang seluruh komponen sel surya. Material substrat juga harus mempunyai konduktifitas listrik yang baik karena juga berfungsi sebagai kontak terminal positif sel surya, sehinga umumnya digunakan material metal atau logam seperti aluminium atau molybdenum. Untuk sel surya dye-sensitized (DSSC) dan sel surya organik, substrat juga berfungsi sebagai tempat masuknya cahaya sehingga material yang digunakan yaitu material yang konduktif tapi juga transparan sepertii ndium tin oxide (ITO) dan flourine doped tin oxide (FTO). 2. Material semikonduktor Material semikonduktor merupakan bagian inti dari sel surya yang biasanya mempunyai tebal sampai beberapa ratus mikrometer untuk sel surya generasi pertama (silikon), dan

1-3 mikrometer untuk sel surya lapisan tipis. Material semikonduktor inilah yang berfungsi menyerap cahaya dari sinar matahari. Untuk kasus gambar diatas, semikonduktor yang digunakan adalah material silikon, yang umum diaplikasikan di industri elektronik. Sedangkan untuk sel surya lapisan tipis, material semikonduktor yang umum

digunakan

dan

telah

masuk

pasaran

yaitu

contohnya

material

Cu(In,Ga)(S,Se)2 (CIGS), CdTe (kadmium telluride), dan amorphous silikon, disamping material-material semikonduktor potensial lain yang dalam sedang dalam penelitian intensif seperti Cu2ZnSn(S,Se)4 (CZTS) dan Cu2O (copper oxide). Bagian semikonduktor tersebut terdiri dari junction atau gabungan dari dua material semikonduktor yaitu semikonduktor tipe-p (material-material yang disebutkan diatas) dan tipe-n (silikon tipen, CdS,dll) yang membentuk p-n junction. P-n junction ini menjadi kunci dari prinsip kerja sel surya. Pengertian semikonduktor tipe-p, tipe-n, dan juga prinsip p-n junction dan sel surya akan dibahas dibagian “cara kerja sel surya”. 3. Kontak metal / contact grid Selain substrat sebagai kontak positif, diatas sebagian material semikonduktor biasanya dilapiskan material metal atau material konduktif transparan sebagai kontak negatif. 4. Lapisan antireflektif Refleksi cahaya harus diminimalisir agar mengoptimalkan cahaya yang terserap oleh semikonduktor. Oleh karena itu biasanya sel surya dilapisi oleh lapisan anti-refleksi. Material anti-refleksi ini adalah lapisan tipis material dengan besar indeks refraktif optik antara semikonduktor dan udara yang menyebabkan cahaya dibelokkan ke arah semikonduktor sehingga meminimumkan cahaya yang dipantulkan kembali. 5. Enkapsulasi / cover glass Bagian ini berfungsi sebagai enkapsulasi untuk melindungi modul surya dari hujan atau kotoran. 2.3 Cara Kerja Sel Surya

Sel surya konvensional bekerja menggunakan prinsip p-n junction, yaitu junction antara semikonduktor tipe-p dan tipe-n. Semikonduktor ini terdiri dari ikatan-ikatan atom yang dimana terdapat elektron sebagai penyusun dasar. Semikonduktor tipe-n mempunyai kelebihan elektron (muatan negatif) sedangkan semikonduktor tipe-p mempunyai kelebihan hole (muatan positif) dalam struktur atomnya. Kondisi kelebihan elektron dan hole tersebut bisa terjadi dengan mendoping material dengan atom dopant. Sebagai contoh untuk mendapatkan material silikon tipe-p, silikon didoping oleh atom boron, sedangkan untuk mendapatkan material silikon tipe-n, silikon didoping oleh atom fosfor. Ilustrasi dibawah menggambarkan junction semikonduktor tipe-p dan tipe-n.

Junction antara semikonduktor tipe-p (kelebihan hole) dan tipe-n (kelebihan elektron). (Gambar : eere.energy.gov) Peran dari p-n junction ini adalah untuk membentuk medan listrik sehingga elektron (dan hole) bisa diekstrak oleh material kontak untuk menghasilkan listrik. Ketika semikonduktor tipe-p dan tipe-n terkontak, maka kelebihan elektron akan bergerak dari semikonduktor tipe-n ke tipe-p sehingga membentuk kutub positif pada semikonduktor tipe-n, dan sebaliknya kutub negatif pada semikonduktor tipe-p. Akibat dari aliran elektron dan hole ini maka terbentuk medan listrik yang mana ketika cahaya matahari mengenai susuna p-n junction ini maka akan mendorong elektron bergerak dari semikonduktor menuju kontak negatif, yang selanjutnya dimanfaatkan

sebagai listrik, dan sebaliknya hole bergerak menuju kontak positif menunggu elektron datang, seperti diilustrasikan pada gambar dibawah.

Ilustrasi cara kerja sel surya dengan prinsip p-n junction. (Gambar : sun-nrg.org) 2.4 Perbandingan Penggunaan Sel Surya Dengan Energi Lain Energi baru dan terbarukan mulai mendapat perhatian sejak terjadinya krisis energi dunia yaitu pada tahun 70-an dan salah satu energi itu adalah energi surya. Energi itu dapat berubah menjadi arus listrik yang searah yaitu dengan menggunakan silikon yang tipis. Sebuah kristal silindris Si diperoleh dengan cara memanaskan Si itu dengan tekanan yang diatur sehingga Si itu berubah menjadi penghantar. Bila kristal silindris itu dipotong setebal 0,3 mm, akan terbentuklah sel-sel silikon yang tipis atau yang disebut juga dengan sel surya fotovoltaik. Sel-sel silikon itu dipasang dengan posisi sejajar/seri dalam sebuah panel yang terbuat dari alumunium atau baja anti karat dan dilindungi oleh kaca atau plastik. Kemudian pada tiap-tiap sambungan sel itu diberi sambungan listrik. Bila sel-sel itu terkena sinar matahari maka pada sambungan itu akan mengalir arus listrik. Besarnya arus/tenaga listrik itu tergantung pada jumlah energi cahaya yang mencapai silikon itu dan luas permukaan sel itu. Pada asasnya sel surya fotovoltaik merupakan suatu dioda semikonduktor yang berkerja dalam proses tak seimbang dan berdasarkan efek fotovoltaik. Dalam proses itu sel surya menghasilkan tegangan 0,5-1 volt tergantung intensitas cahaya dan zat semikonduktor yang dipakai. Sementara itu intensitas energi yang terkandung dalam sinar matahari yang sampai ke

permukaan bumi besarnya sekitar 1000 Watt. Tapi karena daya guna konversi energi radiasi menjadi energi listrik berdasarkan efek fotovoltaik baru mencapai 25% maka produksi listrik maksimal yang dihasilkan sel surya baru mencapai 250 Watt per m2 . Dari sini terlihat bahwa PLTS itu membutuhkan lahan yang luas. Hal itu merupakan salah satu penyebab harga PLTS menjadi mahal. Ditambah lagi harga sel surya fotovoltaik berbentuk kristal mahal, hal ini karena proses pembuatannya yang rumit. Namun, kondisi geografis Indonesia yang banyak memiliki daerah terpencil sulit dibubungkan dengan jaringan listrik PLN. Kemudian sebagai negara tropis Indonesia mempunyai potensi energi surya yang tinggi. Hal ini terlihat dari radiasi harian yaitu sebesar 4,5 kWh/m2/hari. Berarti prospek penggunaan fotovoltaik di masa mendatang cukup cerah. Untuk itulah perlu diusahakan menekan harga fotovoltaik misalnya dengan cara sebagai berikut. Pertama menggunakan bahan semikonduktor lain seperti Kadmium Sulfat dan Galium Arsenik yang lebih kompetitif. Kedua meningkatkan efisiensi sel surya dari 10% menjadi 15%. Energi listrik yang berasal dari energi surya pertama kali digunakan untuk penerangan rumah tangga dengan sistem desentralisasi yang dikenal dengan Solar Home System (SHS), kemudian untuk TV umum, komunikasi dan pompa air. Sementara itu evaluasi program SHS di Indonesia pada proyek Desa Sukatani, Bampres, dan listrik masuk desa menunjukkan tanda-tanda yang menggembirakan dengan keberhasilan penerapan secara komersial. Berdasarkan penelitian yang dilakukan sampai tahun 1994 jumlah pemakaian sistem fotovoltaik di Indonesia sudah mencapai berkisar 2,5-3 MWp. Yang pemakaiannya meliputi kesehatan 16%, hibrida 7%, pompa air 5%, penerangan pedesaan 13%, Radio dan TV komunikasi 46,6% dan lainnya 12,4%. Kemudian dari kajian awal BPPT diperoleh proyeksi kebutuhan sistem PLTS diperkirakan akan mencapai 50 MWp. Sementara itu menurut perkiraan yang lain pemakaian fotovoltaik di Indonesia 5-10 tahun mendatang akan mencapai 100 MW terutama untuk penerangan di pedesaan. Sedangkan permintaan fotovotaik diperkirakan sudah mencapai 52 MWp. Komponen utama sistem surya fotovoltaik adalah modul yang merupakan unit rakitan beberapa sel surya fotovoltaik. Untuk membuat modul fotovoltaik secara pabrikasi bisa menggunakan teknologi kristal dan thin film. Modul fotovoltaik kristal dapat dibuat dengan teknologi yang relatif sederhana, sedangkan untuk membuat sel fotovoltaik diperlukan teknologi tinggi. Modul fotovoltaik tersusun dari beberapa sel fotovoltaik yang dihubungkan secara seri dan paralel. Biaya yang dikeluarkan untuk membuat modul sel surya yaitu sebesar 60% dari biaya total. Jadi, jika modul sel surya itu bisa diproduksi di dalam negeri berarti akan bisa menghemat biaya pembangunan PLTS. Untuk

itulah, modul pembuatan sel surya di Indonesia tahap pertama adalah membuat bingkai (frame), kemudian membuat laminasi dengan sel-sel yang masih diimpor. Jika permintaan pasar banyak maka pembuatan sel dilakukan di dalam negeri. Hal ini karena teknologi pembuatan sel surya dengan bahan silikon single dan poly cristal secara teoritis sudah dikuasai. Dalam bidang fotovoltaik yang digunakan pada PLTS, Indonesia ternyata telah melewati tahapan penelitian dan pengembangan dan sekarang menuju tahapan pelaksanaan dan instalasi untuk elektrifikasi untuk pedesaan. Teknologi ini cukup canggih dan keuntungannya adalah harganya murah, bersih, mudah dipasang dan dioperasikan dan mudah dirawat. Sedangkan kendala utama yang dihadapi dalam pengembangan energi surya fotovoltaik adalah investasi awal yang besar dan harga per kWh listrik yang dibangkitkan relatif tinggi, karena memerlukan subsistem yang terdiri atas baterai, unit pengatur dan inverter sesuai dengan kebutuhannya. Dalam penerapannya fotovoltaik dapat digabungkan dengan pembangkit lain seperti pembangkit tenaga diesel (PLTD) dan pembangkit listrik tenaga mikro hidro (PLTM). Penggabungan ini dinamakan sistem hibrida yang tujuannya untuk mendapatkan daya guna yang optimal. Pada sistem ini PLTS merupakan komponen utama, sedang pembangkit listrik lainnya digunakan untuk mengkompensasi kelemahan sistem PLTS dan mengantisipasi ketidakpastian cuaca dan sinar matahari. Pada sistem PLTS-PLTD, PLTD-nya akan digunakan sebagai "bank up" untuk mengatasi beban maksimal. Pengkajian dan penerapan sistem ini sudah dilakukan di Bima (NTB) dengan kapasitas PLTS 13,5 kWp dan PLTD 40 kWp. Penggabungan antara PLTS dengan PLTM mempunyai prospek yang cerah. Hal ini karena sumber air yang dibutuhkan PLTM relatif sedikit dan itu banyak terdapa di desa-desa. Untuk itulah pemerintah Indonesia dengan pemerintah Jepang telah merealisasi penerapan sistem model hidro ini di desa Taratak (Lombok Tengah) dengan kapasitas PLTS 48 kWp dan PLTM sebesar 6,3 kW. Pada sistem hibrida antara fotovoltaik dengan Fuel Cell (sel bahan bakar), selisih antara kebutuhan listrik pada beban dan listrik yang dihasilkan oleh fotovoltaik akan dipenuhi oleh fuel cell. Controller berfungsi untuk mengatur fuel cell agar listrik yang keluar sesuai dengan keperluan. Arus DC yang dihasilkan fuel cell dan arus fotovoltaik digabungkan pada tegangan DC yang sama kemudian diteruskan ke power conditioning subsystem (PCS) yang berfungsi untuk mengubah arus DC menjadi arus AC. Keuntungan sistem ini adalah efisiensinya tinggi sehingga dapat menghemat bahan bakar, dan kehilangan daya listrik dapat diperkecil dengan menempatkan fuel cell dekat pusat beban.

2.5 Sistem PLTS PLTS dengan sistem sentralisasi artinya pembangkit tenaga listrik dilakukan secara terpusat dan suplai daya ke konsumen dilakukan melalui jaringan distribusi. Sistem ini cocok dan ekonomis pada daerah dengan kerapatan penduduk yang tinggi. Contohnya PLTS di Desa Kentang Gunung Kidul mempunyai kapasitas daya 19 kWp, kapasitas baterai 200 volt dan beban berupa penerangan yang terpasang pada 85 rumah. Sementara itu PLTS dengan sistem individu daya terpasangnya relatif kecil yaitu sekitar 48-55 Wp. Jumlah daya sebesar 50 Wp per rumah tangga diharapkan dapat memenuhi kebutuhan penerangan, informasi (TV dan Radio) dan komunikasi (Radio komunikasi). Dan sampai tahun 95 sistem ini sudah terpasang sekitar 10.000 unit yang tersebar di seluruh perdesaan Indonesia dan pengelolaannya yang meliputi pemeliharaan dan pembayaran dilaksanakan oleh KUD. Melihat trend harga sel surya yang semakin menurun dan dalam rangka memperkenalkan sistem pembangkit yang ramah lingkungan, pemanfaatan PLTS dengan sistem individu semakin ditingkatkan. Pada tahap pertama direncanakan akan dipasang 36.000 unit SHS selama tiga tahun dengan prioritas 10 propinsi di kawasan timur Indonesia. Paling tidak ada 5 keuntungan pembangkit dengan surya fotovoltaik. Pertama energi yang digunakan adalah energi yang tersedia secara cuma-cuma. Kedua perawatannya mudah dan sederhana. Ketiga tidak terdapat peralatan yang bergerak, sehingga tidak perlu penggantian suku cadang dan penyetelan pada pelumasan. Keempat peralatan bekerja tanpa suara dan tidak berdampak negatif terhadap lingkungan. Kelima dapat bekerja secara otomatis. Pembangkit listrik yang memanfaatkan energi surya atau lebih umum dikenal dengan Pembangkit Listrik Tenaga Surya (PLTS) mempunyai beberapa keuntungan yaitu:

1. Sumber energi yang digunakan sangat melimpah 2. Sistem yang dikembangkan bersifat modular sehingga dapat dengan mudah diinstalasi dan diperbesar kapasitasnya. 3. Perawatannya mudah 4. Tidak menimbulkan polusi 5. Dirancang bekerja secara otomatis sehingga dapat diterapkan ditempat terpencil. 6. Relatif aman 7. Keandalannya semakin baik

8. Adanya aspek masyarakat pemakai yang mengendalikan sistem itu sendiri 9. Mudah untuk diinstalasi 10. Radiasi matahari sebagai sumber energi tak terbatas 11. Tidak menghasilkan CO2 serta emisi gas buang lainnya Salah satu kendala yang dihadapi dengan dalam pengembangan Pembangkit Listrik Tenaga Surya adalah Investasi awalnya yang tinggi dan harga per kWh listrik yang dibangkitkan juga masih relatif tinggi yaitu Sekitar ($ USD 3 –5 / Wp). Untuk beberapa ko...


Similar Free PDFs