Physics II Test 2 Sheet - Summary of Equations needed for Exam 2 PDF

Title Physics II Test 2 Sheet - Summary of Equations needed for Exam 2
Course Algebra-Based Physics II
Institution University of North Florida
Pages 2
File Size 136.3 KB
File Type PDF
Total Downloads 96
Total Views 134

Summary

Summary of Equations needed for Exam 2...


Description

Magnetic Field due to Current with Loop

Force on Conductor w Motional EMF

B=[(µ0I)/(2R)] * N

Fpull=Fmag=ilB=(vlB⁄R)lB=(vl2B2)⁄R

Magnetic Field of a Solenoid

P=E⁄t=(Fd)⁄t=Fv (Power)

B=[(µ0I)/(L)] * N

Pinput=FpullV=(v2l2B2)⁄R (R=resistance)

ΔVloop=ΔV1+ΔV2 +ΔV3+...= 0

Magnetic Force on Moving Charge in a Uniform Magnetic Field

Pdissipated=I2R=(v2l2B2)⁄R=emf2R

Circuit with battery & resistor

F=|q|vBsinϴ=(mv2)/r

Chapter 23- Circuits V= Uelec/q

VB= VR1+VR2

є=V-IR

Kirchov’s Junction Law Kirchov’s Loop Law

r =(mv)/|q|B

Magnetic Flux (Loop) Φ=AeffBcosϴ [Wb]

V=IR

ΔVbat= єmf

v=[2qV/m]^.5

ΔVR= -IR

єmf-IR= 0

Magnetic Force on a Current/ Wire

Aeff=abcosϴ=Acosϴ

Fwire= ILBsin ϴ = |q|vBsinϴ = q(d/t)Bsinϴ =(q/t)dBsin ϴ = IdBsinϴ

Iinduced=єmf⁄R (Induced emf)

Resistors in Series I= єmf/R1+R2

Req=R1+R2

Єmf= |ΔΦ⁄Δt| (Faraday’s Law)

Resistors in Parallel

Torque on a Loop

Єmfcoil=N|ΔΦper coil⁄Δt|=NA|ΔB⁄Δt|

єmf=ΔV1=ΔV2

T=Ttop+Tbottom= .5Ftopsinϴ+.5Fbottomsinϴ =(.5L)ILBsinϴ+(.5L)ILBsinϴ =(IA)Bsinϴ*N (if multiple turns)

Electromagnetic waves

IA= magnetic dipole moment

Ey=E0sin2pi[(x⁄λ)-(t⁄T or ft)]

Charge to Mass ratio of particle moving in a uniform magnetic field

Bz=B0sin2pi[(x⁄λ)-(t⁄T or ft)]

Ibat= I1+I2 =(ΔV1/R1)+(ΔV2/R2)= (єmf/R1) + (єmf/R2) Req (3) = (R1R2R3)/(R1R2+R1R3+R2R3) ^(2)= (R1R2)/(R1+R2)

Capacitor in Parallel

I=P⁄A=.5cє0E02=.5(c⁄µ0)B02 (Intensity)

(q/m)=(2pi/TB)

Qtot=Q1+Q =C1ΔVc+C2ΔVc Ceq=Q/ΔVc=C1+C2 Capacitor in Series ΔV1=Q/C1

C=λf =E0⁄B0 (wave speed) (0=amp)

ΔVc=ΔV1+ΔV2

Ceq=[(1/C1)+(1/C2)+(1/C3)]^-1

Mass Spectrometer U=KqΔV=.5mv

Polarizers

Bar Magnet Magnetic Dipole moment

Etransmitted=Eincidentcosϴ (E of lighttrans)

T=mBsinϴ

m=T/Bsinϴ

Itrans=Einc(cosϴ)2 (Malu’s Law)

Hall Probe Q

ΔVH=(IB)/(tne)

I1=.5I0 (Intensisty polarizer)

Speed Blood Flow

= (C1C2)/(C1+C2)

I=Psource⁄4pir2 (spherical wave) (r=d) 2

ΔVH=vBh

I2=I1cos2ϴ=.5I0cos2ϴ (I analyzer)

Fc=FB-> qE=qvB -> E=vB -> ΔV=Eh=vBh

Ephoton=hf [eV]

Separation Distance r F= (µ0I1I2)/(2pir)

(Q⁄T)=eϭAT4 (rate heat transfer)

I=ΔVc/R (after time “t”)

Electron’s acceleration through a wire

λpeak=2.9*106⁄T [nm] (Wien’s Law)

I=I0e^(-t/RC) or I=I0e^(-t/T)

F=qvB=ma-> a= (qvB)/m = (efcB)/m = (efcµ0I)/2pidm

E dissipated in a resistor Q

Chapter 25-EM Induction & Waves

Wave E through an area A Q E=IAΔt

Motional EMF on Conductor Charge Separation

E Density

FE=qE=FB=qvB (if perp to field)

Power flow per unit Area

E=vB (electric field in conductor)

s=є0cE2[W⁄m2]

ΔV=vlB (potential diff of conductor)

Power Output Antenna Q

єmf=vlB (l=length)

P=I4piR2=(fc⁄2A)4piR2

Ohm’s Law& Induced Current foEr Wire I = E ⁄ R=(vlB) ⁄ R

Force of Light on Polarizer Q

RC Circuits (ΔVc)0=Q0/C

I0=(ΔVc)0/R

ΔVc=(ΔVc)0e^(-t/RC or T) Time Const “T” = RC Capacitor w/ Battery Charging I=I0e^(-t/RC) ΔVc=єmf[1-e^(-t/RC)] Chapter 24-Magnetic Fields/Forces XXX= into

OOO= out of

Magnetic Field due to long straight current/wire:

B=(µ0I)/(2piR)

E=P⁄t=єmf2t⁄R=N2A2t⁄R

u=є0E2

F=pA Iab=I-Itr=I(1-cos2ϴ)

Chapter 26-AC Electricity Emf of AC Voltage Source Є=є0cos(2pifT)=є0cos(2pit⁄T) (є⁄R)=(є0⁄R)cos…i=i0cos… Inst. Resistor Voltage

vR=iRR

RLC Circuit resonance freq Xc=XL f0=[1⁄2pi√(LC)] Max Current when Circuit at Resonance f z=R I=(V⁄Z)=(V⁄R)

ϴmin=(1.22λ⁄D)=d⁄L=sinϴm=ϴm L=(dD)⁄(1.22λ) Mars min Feature Size Q d=(1.22λL)⁄D

Z=√[R2+(XL-XC)] XC=XLf0=(1⁄2pi√LC)

Chapter 18-Ray Optics

RLC Circuit with Angular Frequency “w”Q

ϴi=ϴr (Law of Reflection)

Xc=XL(1⁄wc)=wLw2=(1⁄LC)L=(1⁄ w2C)

S’=S (plane mirror)

Phase Angle of RLC Circuit Q

n1sinϴ1=n2sinϴ2 (Snell’s Law, n= refr)

Z=√[R2+(XL-XC)2]

ϴc=sin-1(n2⁄n1) (critical angle if n increase)

tanΦ=(XL-XC)⁄R

l=stanϴ1=s’tanϴ2s’=(tanϴ1⁄tanϴ2)s

Current with 1 resistor in circuit

*^voltage step down vv

(sinϴ1⁄sinϴ2)=(n2⁄n1)=abt (tanϴ1⁄tanϴ2)

iR=(vR⁄R)=(VRcos(2pift)⁄R)=IRcos…

# Turns Secondary Coil Q

m=-(s’⁄s) (magnification or orientatiom)

(Vp⁄Vs)=(Np⁄Ns)=(IS⁄Ip)

|m|=(h’⁄h) (ratio image height to obj height)

Chapter 17-Wave Optics

(h’⁄h)=(s’-f)⁄f(1⁄s)=(s’-f)(⁄s’f)=(1⁄f)-(1⁄s’)

f=(v⁄λ)=(c⁄λ) n=(c⁄v) (index refract)

(h’⁄h)=(s’⁄s)

Kirchov’s Loop Law&Resistor Circuit ΔVtotal= ΔVsource+ΔVR = є-vR = 0 Resistor Voltage @ Sinusodial freq vR=(VR⁄R)=(VRcos(2pift)⁄R)=IRcos(2pi ft)

IR=VR⁄R (peak current) AC Power in Resistors P=iR2R=[IRcos(2pift)]2R=IR2R[cos(2pift)]2

PR=.5IR2R (average power) Irms=(IR⁄√2)

Vrms=(VR⁄√2) (root mean sq)

Average Power lost in Resistor PR=Irms2R=(Vrms2⁄R)=IrmsVrms Transformers V1or2=є1or2=N1or2(ΔΦ⁄Δt) [Faraday’s Law] (v1⁄v2)=(N1⁄N2)=(i1⁄i2) [ratio inst voltage] V2=(N2⁄N1)V1 or V2(rms)=(N2⁄N1)V1(rms) I2=(N1⁄N2)I1

or

I2(rms)=(N1⁄N2)I1(rms)

vc=Vccos(2pift)

λmat=(v⁄fmat)=(c⁄nfvac)=(λvac⁄n)

(1⁄s)+(1⁄s )=(1⁄f)

asinϴ=pλ (comp destruct intf)

Laser Aimed at Mirror Question

ϴp=p(λ⁄a) (angle in rad of dark fringe w slit)

ϴr=ϴi=tan-1(l⁄h)

yp=(pλL⁄a) (dark fringe location)

ϴi+Φ=90ϴi=90-Φ

Δr=mλ (construct interference&bright)

Index Refr w Crititcal Angle__

y=Ltanϴ (bright point on screen)

n1sinϴc=n2sin(90)

Δr=dsinϴm=mλ (where both fringe occur)

q=Cvcvc=(q⁄C)

*”from mirror=-s’*

Δy=ym+1-ym=((m+1)λL⁄d)-(mλL⁄d)=(λL⁄d) (spacing between bright fringe)

ic=C(Δvc⁄Δt) (peak value)

Interference of reflected Light

Capacitive Reactance

2t=m(λ⁄n) (construct int,t=dist)

Ic=(Vc⁄XC)Vc=(peak current or volt)

2t=(m+.5)(λ⁄n) (destruct)

Inductor(L)& Inductor Circuits

Circular Aperture Diffraction

vL=L(ΔiL⁄Δt) (inst inductor voltage)

w=2yp=2Ltanϴ1=(2.444pλL⁄D) (width central max fr diam D) ϴ1=(1.22λ⁄D) (1st min instensity)

VL=L(2pifIL)=(2pifL)IL (peak val ind vol)

Soap Bubble Q

IL=(VL⁄XL)VL=ILXL (peak I&V inductor)

*d is slit separation*

XL=2pifL=wL (peak inductive reactance[Ω]) LC Circuit f=(1⁄2pi)√(k⁄m)

h'=(s’⁄s)h

ϴm=(mλL⁄d) (small angle, d-slit spacing)

y’m=(m+.5)(λL⁄d) (dark fringe location)

vL=VLcos(2pift) (in parallel, L [H])

Image height Q

Radius Curvature Spherical Mirror Rc=2f

ic=(Δq⁄Δt) (cap current)

XC=(1⁄2pift)

(Thin Lens Equation)

***Δr=(1+.5)λ for dark

ym=(mλL⁄d) (pos of mth fringe, L screen dist)

Capacitor Circuits

(image real or virtual)



d=(λ⁄4n)m

Vehicle on Desert Road Headlights...


Similar Free PDFs