Problem set 4 solution PDF

Title Problem set 4 solution
Author Wenqi Zhang
Course Portfolio Management
Institution University of New South Wales
Pages 10
File Size 370.1 KB
File Type PDF
Total Downloads 44
Total Views 178

Summary

4problem set 4 tutorial work...


Description

FINS2624 PROBLEM SET 5 SOLUTIONS Question 1. a)

ℎ  →

( ) −  

Sharpe Ratio is a measure for calculating risk-adjusted return. It is the average return earned in excess of the risk-free rate per unit of volatility or total risk Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted return.  =  =

( ) −  0.08 − 0.04 = 0.2 = 0.2 

( ) −  0.16 − 0.04 = = 0.4  0.3

b) A combination of asset Z + the risk-free asset dominates asset X if: - E[Combination] > E[X] AND  =  ; or - E[Combination] = E[X] AND  < 

Below, we consider the first case:

We want to create a portfolio C, consisting of (weights) wZ in Asset Z and wrf = 1- wZ in the rf asset, such that:  = 

( ) > ( )

and

( ) =  ( ) + (1 −  ) ( ) =  +  ( ) −  

 + 2 (1 −  ) ,    =   + (1 −  )   ∴  =   ,   =  ,   = 0

∴  =     =  ,

  = 0.2 →  =

∴ ( ) = 0.04 +

0.2 2 = 0.3 3

2 (0.16 − 0.04) = 0.12 > 0.08 (= [ ]) 3

∴   

c)

  →  =  = 0.5 ( ) =  +  ( ) −  

( ) = 0.04 +

1 × 0.04 = 0.06 2

 =   = 0.5 × 0.2 = 0.1

  →       ℎ  =  = 0.1  =   = 0.1 →  =

0.1 1 = 0.3 3

( ) =  +  (( ) −  )

( ) = 0.04 +

1 × 0.12 = 0.08 > ( ) 3

∴   

d) Need to show: d > 0, where

 →  ( ) =  +  ( ) −  ,

( =     )

 =   →  =

 

( ) =  + 󰇩

 ( ) =  +  ( ) −   

( ) − 

Similarly, ( ) =  + 󰇩



( ) −  

󰇪  ,

ℎ

( ) −  =  , ℎ ℎ    

󰇪  ,

ℎ

( ) −  =  , ℎ ℎ    

(CZ = representative portfolio on CAL Z)   =  , ℎ

( ) =  + 󰇩

( ) −  󰇪  

∴  = ( ) − ( ) =  +   −  +   

 = ( −  ) ≥ 0

(  >    ≥ 0)

∴   

Question 1d, Alternative Proof: Return of any complete portfolio of asset X and risk-free asset is:  =  +   −   = 0.04 +  ( − 0.04)   󰇱 [ ] = 0.04 +  × 0.04 … … … … … (1) [ ] =  ×  =  × 0.2 … … … … (2)

Similarly, any complete portfolio of asset Z and risk-free asset is:

 =  +   −   = 0.04 +  ( − 0.04)   󰇱 [ ] = 0.04 +  × 0.12 … … … … … (3) [ ] =  ×  =  × 0.3 … … … … (4) To make sure the portfolio CZ dominates the portfolio CX, we only need: [ ] = [ ] … … … … (5)

[ ] > [ ] … … … … (6)

For (5) to hold, equating (2) and (4), we get:  =

2 ×  … … … … (7) 3

Now, let’s check whether (6) holds given (7) ( ) = 0.04 +  × 0.12 = 0.04 +

End of proof

2 ×  × 0.12 3

( ) = 0.04 + 0.08 ×  > ( ) = 0.04 + 0.04 × 

Question 2.

 = 3% (∗) = 15% ∗ = 20%

1  = () −   2 A complete portfolio C with the fraction y invested in P* & (1-y) in risk-free asset has the following return:  =  + ∗ −   ( ) =  + (∗) −    =  × ∗

a) We want to maximise the investor’s utility function. The utility function is given by: 1  = ( ) −  2 1  =  + (∗) −   − ( × ∗ ) 2 Thus, set the first derivative (with respect to y) equal to 0, and solve for the optimal weight, y*:   = (∗) −  − ∗ =0  → ∗ =

(∗) −  1 0.15 − 0.03 1 ×󰇧 󰇨= × = 1.5   0.2 2 ∗

So, (1-y*) = -0.5 This means the investor should borrow 50% of her wealth and then invest the total amount of money she has, 150% of her wealth, in the optimal risky portfolio P*.

CAL

Efficient frontier of risky assets P*

rf

b) & c) We know the optimal fraction in P*, ∗ =

1 (∗ ) −  ×   ∗

So, a more risk-averse investor (i.e. with a higher A) should invest less in P*.

And if the portfolio P* offers a higher E(rP*), but same ∗ , then the risk-reward ratio, (∗ ) , ∗

is higher, so a higher y*.

The investors should invest more.

d)

New P* New rf

P*

rf = 3%

The optimal risky portfolio is the tangent portfolio of the linear line from rf to the efficient frontier. From the graph above, you can see the new P* should have a higher expected return and a higher volatility.

e) From a), we know the optimal fraction in P* is given by: ∗ =

1 (∗) −  ×   ∗

1. The investor can invest at  = 3%, where  is the mean Lending rate. So, the optimal fraction in P* should be: ∗ =

1 (∗) −  × ,  ℎ      100%   ∗ 

Why not above 100%? Because she can only lend (not borrow) at  = 3%

2. The investor can borrow at  = 5%, where  is the mean Borrowing rate. So, the optimal fraction in P* should be: ∗ =

1 (∗) −  × ,  ∗ > 1   ∗

3. Let’s put numbers in: 1 0.15 − 0.03 ∗ = × = 1.5 > 100%,    2 0.2

1 0.15 − 0.05 ∗ = × = 1.25 > 1 → ℎ    ℎ      5% 2 0.2 →  = 1 − ∗ = 1 − 1.25 = −0.25

Hence, the optimal portfolio is to borrow 25% of her wealth at 5% and invest 125% of her wealth in the optimal risky portfolio. With this higher borrowing rate, allocation of wealth shifts towards less leverage (compared to part a).

f)

 =  (1 − ∗ ) + ∗ ∗

( ) =  + ∗ (∗) −   ( ) = 0.05 + 1.25 × (0.15 − 0.05) = 17.5%  = ∗ ∗ = 1.25 × 0.2 = 0.25...


Similar Free PDFs