Procesos de transferencia de calor kern PDF

Title Procesos de transferencia de calor kern
Author Ovidio soberano
Pages 982
File Size 33 MB
File Type PDF
Total Downloads 441
Total Views 983

Summary

PROCESOS DE TRANSFERENCIA DE CALOR P R O C E S O S DE TRANSF.ERENCIA D E C A L O R Por DONALD Q. KERN D. Q. Kem Asociados y Catedrático Instructor en +Ingeniería Wmica Case Institute of Technolog9 TRIGÉSIMA PRIMERA REIMPRESIÓN MÉXICO, 1999 COMPAÑÍA EDITORIAL CONTINENTAL, S.A. DE C.V. MÉXICO Título ...


Description

Accelerat ing t he world's research.

Procesos de transferencia de calor kern Ovidio soberano

Related papers

Download a PDF Pack of t he best relat ed papers 

Procesos de Transferencia de Calo Dan Benit ez Procesos de Transferencia de Calor (Donald Q. Kern) Pablo Arciniega Procesos de Transferencia de Calor (Donald Q. Kern) pdf Monserrat Neri

PROCESOS DE TRANSFERENCIA DE CALOR

P R O C E S O S DE TRANSF.ERENCIA D E C A L O R

Por

DONALD Q. KERN D. Q. Kem Asociados y Catedrático Instructor en +Ingeniería Wmica Case Institute of Technolog9

TRIGÉSIMA PRIMERA REIMPRESIÓN MÉXICO, 1999

COMPAÑÍA EDITORIAL CONTINENTAL, S.A. DE C.V. MÉXICO

Título original de la obra: PROCESS HEAT TRANSFER Publicada por: MCGRAW HILL BOOK COMPANY, INC. 0 McGraw Hill Book Company, Inc. Traducción: Ing. Nicolás Marino Ambrossi Ingeniero Consultor de Consulta Técnica Industrial Procesos de transferencia de calor Derechos reservados en español: 0 1965, COMPAÑÍA EDITORIAL CONTINENTAL, S.A. de C.V. Renacimiento 180, Colonia San Juan Tlihuaca, Delegación Azcapotzalco, Código Postal 02400, México, D.F. Miembro de la Cámara Nacional de la Industria Editorial. Registro núm. 43 ISBN 96%26-

1040-0

prohibida la reproducción o transmisión total o parcial del contenido de la presente obra en cualesquiera formas, sean electrónicas o mecánicas, sin el consentimiento previo y por escrito del editor. Queda

Impreso en México Printed in Mexico Primera edición: 1965 Trigésima reimpresión: 1998 Trigésima primera reimpresión: 1999

A mi Esposa NATALZE W. KERN Por su ayuda efectiva

PREFACIO El objeto de este libro es proporcionar instrucción fundamental en transferencia de calor empleando los métodos y lenguaje usados en la industria. El tratamiento de este temá tiene su origen en un curso dado en el Instituto Politécnico de Brooklyn por un periodo de varios años. Las posibilidades de una instrucción colegiada modelada según los requerimientos de la ingeniería de proceso, fueron sugeridas y alentadas por el Dr. Donald F. Othmer, Jefe del Departamento de Ingeniería Química. La inclusión de los aspectos prácticos de la materia como una parte integral de la pedagogía, se hizo con el intento de que sirva como suplemento más que sustituir a una vigorosa fundamentación en los procesos de ingeniería. Estos puntos de vista se han retenido a través de la preparación de este libro. Para proveer el amplio grupo de herramientas de transferencia de calor requeridas en la ingeniería de proceso, ha sido necesario presentar cierto número de métodos de calculo empirico que no han aparecido previamente en la literatura de la ingeniería. A estos métodos se les ha dado considerable atención, y el autor los ha discutido con numerosos ingenieros antes de aceptarlos e incluirlos en este libro. Ha sido un deseo colateral el que todos los cálculos que aparecen en el texto hayan sido llevados a efecto por un ingeniero experimentado y según el método convencional. En muchas ocasiones, el autor ha requerido la ayuda de colegas experimentados, su asistencia se reconoce en el texto. En la presentación de algunos métodos, se ha sacrificado algo de su exactitud, para permitir una aplicación más amplia de unos cuantos de ellos; se espera que estas simplificaciones no provoquen inconveniencia ni criticas. Al iniciar este libro se hizo aparente que sería demasiado grande para poder usarse convenientemente, esto afectó el pien para escribir el libro en algunos aspectos importantes. Cierta porción del material que se incluye en textos convencionales se usa rara vez 0 casi nunca, en la solución de problemas prácticos. Tal material, por aceptado o familiar que pueda ser, se ha omitido, a menos que esté calificado como información fundamental importante. Segundo, no fue posible disponer de espacio para hacer comparaciones bibliográficas y evaluaciones al mismo tiempo que se presentan tópicos de práctica industrial. Donde no se ha hecho mención a recientes contribuciones de la literatura, no debe tomarse como menosprecio. Muchas de las

8

P R E F A C I O

referencias bibliográficas citadas cubren métodos en los cuales el autor ha obtenido información adicional de aplicación industrial. El autor ha sido influido en su desarrollo profesional por los excelentes libros del Prof. W. H. McAdams, Dr. Alfred Schack y otros, y se estimó que su influencia debería reconocerse separadamente, además de su incidencia en el texto como bibliografía. Por su asistencia en la formación del manuscrito expreso mi gratitud a Thomas H. Miley, John Blizard, y John A. Jost, antiguos asociados en la Foster Wheeler Corporation. En la comprobación de los cálculos numéricos se debe crédito a Krishnabhai Desai y Narendra R. Bhow, estudiantes graduados del Instituto Politécnico. Por sugestiones que determinaron la inclusión o exclusión de cierto material, se agradece a Norman E. Anderson, Charles Bliss, Dr. John F. Middleton, Edward L. Pfeiffer, Oliver N. Prescott, Everett N. Sieder, Dr. George E. Tait, y a Joseph Meisler por su asistencia con las pruebas. La Tubular Exchanger Manufacturers Association ha sido muy generosa al otorgar su permiso para la reproducción de cierto número de gráficas contenidas en sus estándares. También se agradece a Richard L. Cawood, Presidente, y Arthur E. Kempler, Vicepresidente, por su asistencia personal y por la cooperación de The Patterson Foundry & Machine Company. DONALDQ.KERN New York. N, Y.

CONTENIDO PÁG. P REFACIO .......................................... INDICE DE CÁLCULOS DE ~0s PRINCIPALES APARATOS ........

7 12

CAP.

1. Procesos de transferencia de calor . . . . . . . . . . . . . . . . 2. Conducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Convección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Radiación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Temperatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Flujo a contracorriente : intercambiadores de doble tubo 7. Intercambiadores de tubo y coraza: flujo 1-2 contracorriente-paralelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. Disposición de flujos para aumentar la recuperación de calor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10. Flujo laminar y convección libre . . . . . . . . . . . . . . . . ll. Cálculos para las condiciones de proceso . . . . . . . . . 12. Condensación de vapores simples . . . . . . . . . . . . . . . 13. Condensación de vapores mezclados . , . . . . . . . . . . . 14. Evaporación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. Vaporizadores, evaporadores y calderetas . . . . . . . . . 16. Superficies extendidas . . . . . . . . . . . . , . . . . . . . . . . . . . 17. Transferencia por contacto directo: torres de enfriamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18. Procesos por lotes y de estado inestablle . . . . . . . . . . . 19. Cálculo de hornos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20. Aplicaciones adicionales . . . . . . . . . . . . . . . . . . . . . . . . 21. Control de temperatura y variables de proceso relacionadas .................................... APÉNDICE DE DATOS PARA CÁLCULOS .................... INDICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 19 43 85 111 131 159 213 231 243 265 301 369 437 523 589 645 712 767 813 869 898 957

INDICE

DE CALCULO DE LOS PRINCIPALES APARATOS PÁG.

INTERCAMBIADORES Intercambiador a contracorriente de doble tubo (benceno tolueno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intercambiador de doble tubo serle-paralelo (aceite lubricante-aceite crudo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intercambiador tubular (kerosena-aceite crudo) . . . . . . . . Intercambiador tubular (agua-agua) . . . . . . . . . . . . . . . . . . Enfriador tubular solución de (K,PO, -agua) . . . . . . . . . . Calentador tubular sin deflectores (soluciones de azúcarvapor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enfriador tubular 2-4 (aceite 33;5” API-agua) ........ Intercambiadores tubulares en serie (acetona-ácido acético) Postenfriador tubular de gas (amoniaco-agua) . . . . . . . . Calentador tubular de flujo laminar (aceite crudo-vapor) Calentador tubular de convección libre (kerosena-vapor ) . Calentador tubular con corazón en los tubos (gasoil-vapor) Calentador para tanque (anilina-vapor) . . . . . . . . . . . . . . . Intercambiador tubular (straw oil-nafta) . . . . . . . . . . . . . Intercambiador tubular 4-8 (aceite delgado-aceite grueso) Enfriador tubular (solución de NaOH-agua) .......... Calentador tubular (alcohol-vapor) . . . . . . . . . . . . . . . . . . Enfriador tubular de flujo dividido (gas de combustiónagua) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Depósitos enchaquetados (soluciones acuosas-vapor) . . . Serpentines de tubos (soluciones acuosas-vapor) . . . . . . Enfriador de serpentín (lodo-agua) . . . . . . . . . . . . . . . . . . . Trombón enfriador (SO, gas-agua) . . . . . . . . . . . . . . . . . . Enfriador atmosférico (chaqueta de agua-agua) . . . . . . . Calentador de resistencia eléctrica . . . . . . . . . . . . . . . . . . CONDENSADORES

143 152 186 191 198 204 221 224 234 245 249 254 261 277 281 285 288 293 816 821 824 828 836 860

(TUBULARES)

Condensador horizontal (propano&agua) . . . . . . . . . . . . . . Condensador vertical ( propanol-agua ) . . . . . . . . . . . . . . . . Condensador desupercalentador horizontal (butanoagua). Subenfriador condensador vertical (pentanos-agua) . . . . . Subenfriador condensador horizontal (pentanos-agua) . . . Condensador de reflujo l-l vertical (bisulfuro de carbonoagua) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condensador de superficie (vapor de escape de turbinaagua... . . . . . . . . . . . . . . . . . . . . . . . . .._...........

327 330 338 343 349 353 363

12

INDICE D E CALCULOS D E . . .

Condensador horizontal (mezcla de hidrocarburos-agua). Condensador horizontal (mezcla de vapor-COZ-agua) . . . . Condensador horizontal (mezcla de hidrocarburos, gas, vapor-agua) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E VAPO RADO RES

VAPORIZA DO RES

451 453 453 454 457 485 495 506 516

( T UBULARES )

Vaporizador de circulación forzada (butano-vapor) . . . . . . Hervidor de marmita (hidrocarburos-vapor) . . . . . . . . . . . Hervidor de termosifón, horizontal (nafta-gasoil) . . . . . . . Hervidor de termosifón, vertical (butano-vapor) . . . . . . . . S UPERFICIES

417

( T UBULARES )

Evaporador de agua cruda . . . . . . . . . . . . . . . . . . . . . . . . . Evaporador para plantas de fuerza . . . . . . . . . . . . . . . . . . Evaporador de múltiple efecto . . . . . . . . . . . . . . . . . . . . . . Evaporador transformador de calor . . . . . . . . . . . . . . . . . Destilador de agua salada . . . . . . . . . . . . . . . . . . . . . . . . . Evaporador de múltiple efecto para jugo de caña . . . . . . . Evaporador de múltiple efecto para licores de desecho en fábricas de papel . . . . . , . . . . . . . . , . . . . . . . . . . . . . . . . Evaporador de circulación forzada múltiple efecto para sosa ,cáustica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaporador para jugo de caña de azúcar con termocompresión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I NTERCAMBIADORES

389 405

536 548 556 563

EXTENDIDAS

Enfriador dle doble tubo con aleta iongitudinal (gasoil-agua) Enfriador tubular de aleta longitudinal (oxígeno-agua) . . . Enfriador de aleta transversal de flujo cruzado (aire-agua) .

609 613 635

TRANSFERENCIA POR CONTACTO DIRECTO

Requerimientos de las torres enfriadoras . . . . . . . . . . . . . . Garantías de las torres enfriadoras . . . . . . . . . . . . . . . . . . . Evaluación de las torres enfriadoras . . . . . . . . . . . . . . . . . Enfriador de gas (nitrógeno-agua) . . . . . . . . . . . . . . . . . . . Enfriador de gas, solución aproximada (nitrógeno-agua) . . CALENTADORES

689 691 696 703 707

RADIANTES

Alambique de tubos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recipientes calentados directamente . . . . . . . . . . . . . . . . .

798 805

CAPITULO 1

PROCESOS DE TRANSFERENCIA DE CALOR Transferencia de calor. La ciencia de la termodinámica trata de las transiciones cuantitativas y reacomodos de energía como calor en los cuerpos de materia. La ciencia de la transferencia de calor está relacionada con la razón de intercambio de calor entre cuerpos calientes y fríos llamados fuente y recibidor. Cuando se vaporiza una libra de agua o se condensa una libra de vapor, el cambio de energía en los dos procesos es idéntico. La velocidad a la que cualquiera de estos procesos puede hacerse progresar con una fuente o recibidor independiente es, sin embargo, inherentemente muy diferente. Generalmente, la vaporización es un fenómeno mucho más rápido que la condensación. Teorías del calor. El estudio de la transferencia de calor se facilitará grandemente mediante una cabal comprensión de la naturaleza del calor. Sin embargo, esta es una ventaja que no está fácilmente disponible para estudiantes de transferencia de calor o ten-n@ dinámica, ya que se han’ descubierto muchas manifestaciones del calor, lo que ha impedido que una teoría simple las cubra a todas ellas. Las leyes que pueden aplicarse a transiciones de masa pueden ser inaplicables a transiciones moleculares o atómicas, y aquéllas que son aplicables a las bajas temperaturas pueden no serlo a las temperaturas altas. Para propósitos de ingeniería es necesario’ comenzar el estudio con información básica acerca de unos cuantos fenómenos. Las fases de una sustancia simple, sólida, líquida y gaseosa, están asociadas con su contenido de energía. En la fase sólida, las moléculas o átomos están muy cercanos, dando esto rigidez. En la fase líquida existe suficiente energía térmica para extender la distancia de las moléculas adyacentes, de manera que se pierde la rigidez. En la fase de gas, la presencia de energía térmica adicional resulta en una separación relativamente completa de los átomos o moléculas, de manera que pueden permanecer en cualquier lugar de un espacio cerrado. También se ha establecido que, dondequiera que ocurra un cambio de fase fuera de la región crítica, se involucra una gran cantidad de energía en esa transición.

14

PROCESOS

DE

TRANSFERENCIA

05

CALOR

Para una misma sustancia en sus diferentes fases, sus varias propiedades térmicas tienen diferente orden de magnitud. Por ejemplo, el calor específico por unidad de masa es muy bajo para los solidos, alto para los líquidos y, usualmente, de valores intermedios para los gases. Asimismo, en cualquier cuerpo que absorba o pierda calor, deben guardarse especiales consideraciones respecto a si el cambio es de calor latente, o sensible, o de ambos. Más aún, se conoce también que una fuente caliente es capaz de grandes excitaciones subatómicas, a tal grado que emite energía sin ningún contacto directo con el recibidor, y éste es el principio fundamental de la radiación. Cada tipo de intercambio exhibe sus propias peculiaridades. Mecanismos de la transferencia de calor. Hay tres formas diferentes en las que el calor puede pasar de la fuente al recibidor, aun cuando muchas de las aplicaciones en la ingeniería son combinaciones de dos o tres. Estas son, conducción, convección y radiación. La conducción es la transferencia de calor a través Conduccibn. de un material fijo tal como la pared estacionaria mostrada en la

Temperatun d e l cuer~m trío

I x=o

I x=x

Dirtmia

--L

F IG . 1.1. Flujo de calor a través de una pared

Fig. 1 .l. La dirección del flujo de calor será a ángulos rectos a la pared, si las superficies de las paredes son isotérmicas y el cuerpo es homogéneo e isotrópico. Supóngase que una fuente de calor existe a la izquierda de la pared y que existe un recibidor de calor en la superficie derecha. Es conocido y después se confirmará por una derivación, que el flujo de calor por hora es proporcional al cambio de temperatura a través de la pared y al área de la pared A. Si t es la temperatura en cualquier punto de la pared y x es el grueso de la pared en dirección del flujo de calor, la cantidad de flujo de calor dQ es dada por Btu/hr

(1.1)

PROCESOS DE TRANSFERENCIA DE CALOB

15

El término -dt/dx se llama gradh,te de temperatura y tiene un @II0 negativo si se supuso una temperatura mayor en la c-a de la pared en donde x = 0 y menor en la cara donde x = X. En otras palabras, la cantidad instantánea de transferencia de calor es proporcional al ‘kírea y a la diferencia de temperatura dt que impulsa el calor a través de la pared de espesor ak. La constante de proporcionalidad k es peculiar a la conducción de calor por conductividad y se le conoce por ccmductiviclud térmiqa. Esta conductividad se evalúa experimentalmente y está básicamente definida por la Ec. ( 1.1). La conductividad térmica de los sólidos tiene un amplio rango de va lores numéricos dependiendo de si el sólido es relativamente un buen conductor del calor, tal como un metal, o un mal conductor como el asbesto. Estos últimos sirven como aisluntes. Aun cuando la conducción de calor se asocia usualmente con la transferencia de calor a través de los sólidos, también es aplicable a gases y líquidos, con sus limitaciones. Convección. La convección es la transferencia de calor entre partes relativamente calientes y frías de un fluido por medio de mezcla. Supóngase que un recipiente con un líquido se coloca SObre una llama caliente. El líquido que se encuentra en el fondo del recipiente se calienta y se vuelve menos denso que antes, debido a su expansión térmica. El líquido adyacente al fondo también es menos denso que la porción superior fría y asciende a través de ella, transmitiendo su calor por medio de mezcla conforme asciende. La transferencia de calor del líquido caliente del fondo del recipiente al resto, es convección n&ural 0 convección libre. Si se produce cualquiera otra agitación, tal como la provocada por un agitador, el proceso es de convección forzada. Este tipo de transferencia de calor puede ser descrito en una ecuación que imita la forma de la ecuación de conducción y es dada por dQ = L4 dt

(1.2)

La constante de proporcionalidad h es un término sobre el cual tiene influencia la naturaleza del fluido y la forma de agitación, y debe ser evaluado experimentalmente. Se llama coefzctente de transferenciu de cdor. Cuando la Ec. ( 1.2) se escribe en su forma integrada, Q = kA At, se le conoce como la ley del enfriamiento de Newton. Radiación. La radiación involucra la transferencia de energía radiante desde una fuente a un recibidor. Cuando la radiación se emite desde una fuente a un recibidor, parte de la energía se absorbe por el recibidor y parte es reflejada por él. Basándose en la se-

16

PROCESBS DE TRANSFERENCIA DE CALOR

gunda ley de la termodinámica, Boltzmann estableció que la velocidad a la cual una fuente da calor es

dQ = ae cL4 T4

(1.3)

Esto se conoce como la ley de la cuarta potencia, 7’ es la temperatura absoluta. x 0 e

Superficie de transferencia de calor, pies” ...


Similar Free PDFs