Process Modeling Simulation and Control for Chemical Engineers PDF

Title Process Modeling Simulation and Control for Chemical Engineers
Author D. Pantoja León
Pages 741
File Size 31.4 MB
File Type PDF
Total Downloads 816
Total Views 994

Summary

WIlllAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA WILLIAM 1. 1. LUYBEN I PROCESS MODELING, l SIMULATION AND \ 5 CONTROL Flit iORI m CHEMICAL ENGINEERS m I 1 SECOND EDITION- a I L McGraw-Hill Chemical Engineering Series ’ Editorial Advisory Board James J. Carberry, Profissor of Chemical En...


Description

WILLIAM WIlllAM 1. LUYBEN I PROCESS MODELING, SIMULATION AND \ CONTROL FlitI iOR m CHEMICAL ENGINEERS SECOND EDITION-

l 5 m 1 I a I L

McGraw-Hill Chemical Engineering Series ’ Editorial Advisory Board James J. Carberry, Profissor of Chemical Engineering, University of Notre Dame James R. Fair, Professor of Chemical Engineering, University of Texas, Austin WilUum P. Schowalter, Professor of Chemical Engineering, Princeton University Matthew Tirrell, Professor of Chemical Engineering, University of Minnesota James Wei, Professor of Chemical Engineering, Massachusetts Institute of Technology

Max S. Petem, Emeritus, Professor of Chentical Engineering, University of Colorado

Building the Literature of a Profession Fifteen prominent chemical engineers first met in New York more than 60 years ago to plan a continuing literature for their rapidly growing profession. From industry came such pioneer practitioners as Leo H. Baekeland, Arthur D. Little, Charles L. Reese, John V. N. Dorr, M. C. Whitaker, and R. S. McBride. From the universities came such eminent educators as William H. Walker, Alfred H. White, D. D. Jackson, J. H. James, Warren K. Lewis, and Harry A. Curtis. H. C. Parmelee, then editor of Chemical and Metallurgical Engineering, served as chairman and was joined subsequently by S. D. Kirkpatrick as consulting editor. After several meetings, this committee submitted its report to the McGrawHill Book Company in September 1925. In the report were detailed specifications for a correlated series of more than a dozen texts and reference books which have since become the McGraw-Hill Series in Chemical Engineering and which became the cornerstone of the chemical engineering curriculum. From this beginning there has evolved a series of texts surpassing by far the scope and longevity envisioned by the founding Editorial Board. The McGrawHill Series in Chemical Engineering stands as a unique historical record of the development of chemical engineering education and practice. In the series one finds the milestones of the subject’s evolution: industrial chemistry, stoichiometry, unit operations and processes, thermodynamics, kinetics, and transfer operations. Chemical engineering is a dynamic profession, and its literature continues to evolve. McGraw-Hill and its consulting editors remain committed to a publishing policy that will serve, and indeed lead, the needs of the chemical engineering profession during the years to come.

The Series Bailey and OUii: Biochemical Engineering Fundamentals Bennett and Myers: Momentum, Heat, amd Mass Transfer Beveridge and Schechter: Optimization: Theory and Practice Brodkey and Hershey: Transport Phenomena: A Unified Approach Carberry: Chemical and Catalytic Reaction Engineering Constantinides: Applied Numerical Methods with Personal Computers Cougbanowr and Koppel: Process Systems Analysis and Control Douglas: Conceptual Design ofchemical Processes Edgar and Himmelblau: Optimization ofchemical Processes Fabien: Fundamentals of Transport Phenomena Finlayson: Nonlinear Analysis in Chemical Engineering Gates, Katzer, and Scbuit: Chemistry of Catalytic Processes Holland: Fundamentals of Multicomponent Distillation Holland and Liapis: Computer Methods for Solving Dynamic Separation Problems Katz, Cornell, Kobayaski, Poettmann, Vary, Elenbaas, aad Weinaug: Handbook of Natural Gas Engineering King: Separation Processes Luyben: Process Modeling, Simulation, and Control for Chemical Engineers McCabe, Smitb, J. C., and Harriott: Unit Operations of Chemical Engineering Mickley, Sberwood, and Reed: Applied Mathematics in Chemical Engineering Nelson: Petroleum Refinery Engineering Perry and Cbilton (Editors): Chemical Engineers’ Handbook Peters: Elementary Chemical Engineering Peters and Timmerbaus: Plant Design and Economics for Chemical Engineers Probstein and Hicks: Synthetic Fuels Reid, Prausnitz, and Sherwood: The Properties of Gases and Liquids Resnick: Process Analysis and Design for Chemical Engineers Satterfield: Heterogeneous Catalysis in Practice Sberwood, Pigford, aad Wilke: Mass Transfer Smith, B. D.: Design of Equilibrium Stage Processes Smith, J. M.: Chemical Engineering Kinetics Smith, J. M., and Van Ness: Zntroduction to Chemical Engineering Thermodynamics Treybal: Mass Transfer Operations VaUe-Riestra: Project Evolution in the Chemical Process Industries Van Ness and Abbott: Classical Thermodynamics of Nonelectrolyte Solutions:

with Applications to Phase Equilibria Van Winkle: Distillation -/ Volk: Applied Statistics for Engineers .J Walas: Reaction Kinetics for Chemical Engineers J Wei, Russell, and Swartzlander: The Structure of the Chemical Processing Industries WbitweU and Toner: Conservation of Mass and E -’ . / /--

Also available from McGraw-Hill Schaum’s

Outline Series in Civil Engineering

Each outline includes basic theory, definitions, and hundreds of solved problems and supplementary problems with answers. Current List Includes: Advanced Structural Analysis Basic Equations of Engineering Descriptive Geometry Dynamic Structural Analysis Engineering Mechanics, 4th edition Fluid Dynamics Fluid Mechanics & Hydraulics Introduction to Engineering Calculations Introductory Surveying Reinforced Concrete Design, 2d edition Space Structural Analysis Statics and Strength of Materials Strength of Materials, 2d edition Structural Analysis Theoretical Mechanics Available at Your College Bookstore

.

-

PROCESS MODELING, SIMULATION, AND CONTROL FOR CHEMICAL ENGINEERS Second Edition

William L. Luyben Process Modeling and Control Center Department of Chemical Engineering Lehigh University

McGraw-Hill Publisbing

Company

New York St. Louis San Francisco Auckland Bogota Caracas Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi Oklahoma City Paris San Juan SHo Paul0 Singapore Sydney Tokyo Toronto

PROCESS MODELING, SIMULATION, AND CONTROL FOR CHEMICAL ENGINEERS INTERNATIONAL EDITION 1996

Exclusive rights by McGraw-Hill Book Co.- Singapore for manufacture and export. This book cannot be m-exported from the country to which it is consigned by McGraw-Hill. 567690BJEPMP9432 Copyright e 1999, 1973 by McGraw-Hill, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, u without the prior written permission of the publisher.

This book was set in Times Roman. The editors were Lyn Beamesderfer and John M. Morris.% The production supervisor was Friederich W. Schulte. The cover was designed by John Hite. Project supervision was done by Harley Editorial Services. Ubrury of Congress Cataloging-in-Publlcatlon

William L. Luyben.-2nd ed. p. cm. Bibliography: p. Includes index. ISBN 6-67-639159-9 1. Chemical process-Math data processing., 3. Chemica TP155.7.L66 1 9 6 9 , 669.2’61-dc19 When ordering this title use ISBN

No.DEADQUiSICION

Data

1 process

ABOUT THE AUTHOR

William L. Luyben received his B.S. in Chemical Engineering from the Pennsylvania State University where he was the valedictorian of the Class of 1955. He worked for Exxon for five years at the Bayway Refinery and at the Abadan Refinery (Iran) in plant. technical service and design of petroleum processing units. After earning a Ph.D. in 1963 at the University of Delaware, Dr. Luyben worked for the Engineering Department of DuPont in process dynamics and control of chemical plants. In 1967 he joined Lehigh University where he is now Professor of Chemical Engineering and Co-Director of the Process Modeling and Control Center. Professor Luyben has published over 100 technical papers and has authored or coauthored four books. Professor Luyben has directed the theses of over 30 graduate students. He is an active consultant for industry in the area of process control and has an international reputation in the field of distillation column control. He was the recipient of the Beckman Education Award in 1975 and the Instrumqntation Technology Award r.-., in 1969 from the Instrument Society of America. f .,y

@CA + NA) + kC

aZ

= o A

Substituting Eq. (2.16) for N,, a(ucA) f&A++kC,=;

aZ

(

‘BA$$

(2.17)

>

The units of the equation are moles A per volume per time.

2.2.2 Energy Equation The first law of thermodynamics puts forward the principle of conservation of energy. Written for a general “open” system (where flow of material in and out of the system can occur) it is Flow of internal, kinetic, and potential energy into system by convection or diffusion +

1

flow of internal, kinetic, and - potentia1 energy out of system by convection or diffusion I[ heat added to system by work done by system on conduction, radiation, and - surroundings (shaft work and reaction PV work) =

I[

time rate of change of internal, kinetic, and potential energy inside system

1

(2.18)

Example 2.6. The CSTR system of Example 2.3 will be considered again, this time with a cooling coil inside the tank that can remove the exothermic heat of reaction 1 (Btu/lb . mol of A reacted or Cal/g. mol of A reacted). We use the normal convention that 1 is negative for an exothermic reaction and positive for an endothermic reaction. The rate of heat generation (energy per time) due to reaction is the rate of consumption of A times 1. Q. = -RVC,k

(2.19)

24

MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYST?XVS

F CA P

FIGURE 2.5

T

CSTR with heat removal.

The rate of heat removal from the reaction mass to the cooling coil is -Q (energy per time). The temperature of the feed stream is To and the temperature in the reactor is T (“R or K). Writing Eq. (2.18) for this system,

FOPOUJO + Ko + 40) - F&U + K + $4 + (Qc + Q) - W + FE’ - F, PO) = $ [(U + K + @VP]

(2.20)

where U K 4 W

= internal energy (energy per unit mass) = kinetic energy (energy per unit mass) = potential energy (energy per unit mass) = shaft work done by system (energy per time) P = pressure of system PO = pressure of feed stream

Note that all the terms in Eq. (2.20) must have the same units (energy per time) so the FP terms must use the appropriate conversion factor (778 ft. lbr/Btu in English engineering units). In the system shown in Fig. 2.5 there is no shaft work, so W = 0. If the inlet and outlet flow velocities are not very high, the kinetic-energy term is negligible. If the elevations of the inlet and outlet flows are about the same, the potential-energy term is small. Thus Eq. (2.20) reduces to

4pV dt

=F,p,U,-FpU+Q,+Q-Fp$+F,p,z = F, po(Uo + PO Fob) - Fp(U + Pv) + Q. + Q

(2.21)

where P is the specific volume (ft3/lb, or m3/kg), the reciprocal of the density. Enthalpy, H or h, is defined: Horh=U+PP

(2.22)

We will use h for the enthalpy,of a liquid stream and H for the enthalpy of a vapor stream. Thus, for the CSTR, Eq. (2.21) becomes &Vu) --Fopoh,-Fph+Q-AVkC, dt

(2.23)

FUNDAMENTALS

25

For liquids the PP term is negligible compared to the U term, and we use the time rate of change of the enthalpy of the system instead of the internal energy of the system. d@ W -=F,p,ho-Fph+Q--VkC, dt

The enthalpies are functions of composition, temperature, and pressure, but primarily temperature. From thermodynamics, the heat capacities at constant pressure, C, , and at constant volume, C,, are

cp=(gp c”=(g)”

(2.25)

To illustrate that the energy is primarily influenced by temperature, let us simplify the problem by assuming that the liquid enthalpy can be expressed as a product of absolute temperature and an average heat capacity C, (Btu/lb,“R or Cal/g K) that is constant. h=C,T

We will also assume that the densities of all the liquid streams are constant. With these simplifications Eq. (2.24) becomes WT)

- = pC&F, To - FT) + Q - IVkC, PC, d t

(2.26)

Example 2.7. To show what form the energy equation takes for a two-phase system, consider the CSTR process shown in Fig. 2.6. Both a liquid product stream F and a vapor product stream F, (volumetric flow) are withdrawn from the vessel. The pressure in the reactor is P. Vapor and liquid volumes are V, and V. The density and temperature of the vapor phase are p, and T, . The mole fraction of A in the vapor is y. If the phases are in thermal equilibrium, the vapor and liquid temperatures are equal (T = T,). If the phases are in phase equilibrium, the liquid and vapor compositions are related by Raoult’s law, a relative volatility relationship or some other vapor-liquid equilibrium relationship (see Sec. 2.2.6). The enthalpy of the vapor phase H (Btu/lb, or Cal/g) is a function of composition y, temperature T,, and pressure P. Neglecting kinetic-energy and potential-energy terms and the work term,

Fo

VL

CA

P

T

I

CA0 PO To

P

FIGURE 2.6 Two-phase CSTR with heat removal.

245

MATHEMATICAL

MODELS

OF

CHEMICAL

ENGINEERING

SYSTEMS

and replacing internal energies with enthalpies in the time derivative, the energy equation of the system (the vapor and liquid contents of the tank) becomes

d@,KH+pV,h) dt

= F,p,h, - Fph - F,p,H + Q - IVkCA

(2.27)

In order to express this equation explicitly in terms of temperature, let us again use a very simple form for h (h = C, T) and an equally simple form for H. H = C, T + 1,

(2.28)

where 1, is an average heat of vaporization of the mixture. In a more rigorous model A, could be a function of temperature TV, composition y, and pressure P. Equation (2.27) becomes

0, KW, T + 4) + PV, C, T3 dt

= F,p,C,T, - F&T - F,pdC, T + I,) + Q - WkC,

(2.29)

Example 2.8. To illustrate the application of the energy equation to a microscopic system, let us return to the plug-flow tubular reactor and now keep track of temperature changes as the fluid flows down the pipe. We will again assume no radial gradients in velocity, concentration, or temperature (a very poor assumption in some strongly exothermic systems if the pipe diameter is not kept small). Suppose that the reactor has a cooling jacket around it as shown in Fig. 2.7. Heat can be transferred from the process fluid reactants and products at temperatur = v.pi - vb& (2.58)

The right-hand side of this equation is a function of temperature only. The term in parenthesis on the left-hand side is defined as the equilibrium constant K,, and it tells us the equilibrium ratios of products and reactants. (2.59)

B. PHASE EQUILIBRIUM. Equilibrium between two phases occurs when the chemical potential of each component is the same in the two phases: p; = py (2.60)

where pi = chemical potential of the jth component in phase I ~7 = chemical potential of the jth component in phase II Since the vast majority of chemical engineering systems involve liquid and vapor phases, many vapor-liquid equilibrium relationships are used. They range from the very simple to the very complex. Some of the most commonly used relationships are listed below. More detailed treatments are presented in many thermodynamics texts. Some of the basic concepts are introduced by Luyben and

FUNDAMENTALS

35

Wenzel in Chemical Process Analysis: Mass and Energy Balances, Chaps. 6 and 7, Prentice-Hall, 1988. Basically we need a relationship that permits us to calculate the vapor composition if we know the liquid composition, or vice versa. The most common problem is a bubblepoint calculation: calculate the temperature T and vapor composition yj, given the pressure P and the liquid composition xi. This usually involves a trial-and-error, iterative solution because the equations can be solved explicitly only in the simplest cases. Sometimes we have bubblepoint calculations that start from known values of xi and T and want to find P and yj. This is frequently easier than when pressure is known because the bubblepoint calculation is usually noniterative. Dewpoint calculations must be made when we know the composition of the vapor yi and P (or T) and want to find the liquid composition x, and T (or P). Flash calculations must be made when we know neither Xj nor yj and must combine phase equilibrium relationships, component balance equations, and an energy balance to solve for all the unknowns. We will assume ideal vapor-phase behavior in our examples, i.e., the partial pressure of the jth component in the vapor is equal to the total pressure P times the mole fraction of the jth component in the vapor yj (Dalton’s law): Pj

= Pyj

(2.61)

Corrections may be required at high pressures. In the liquid phase several approaches are widely used. 1. Raoult’s law. Liquids that obey Raoult’s are called ideal. (2.62)

where Pi” is the vapor pressure of pure component j. Vapor pressures are functions of temperature only. This dependence is often described by (2.64)

2. Relative volatility. The relative volatility aij of component i to component j is defined : Crij

-- YJx*Yjlxj

(2.65)

Relative volatilities are fairly constant in a number of systems. They are convenient so they are frequently used.

36

MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYSTEMS

In a binary system the relative volatility c( of the more volatile compone\nt compared with the less volatile component is Y/X IX = (1 - y)/(l - x) Rearranging, ax y = 1 + (a - 1)x

(2.66)

3. K values. Equilibrium vaporization ratios or K values are widely used, particularly in the petroleum industry. Kj =t

(2.67)

The K’s are functions of temperature and composition, and to a lesser extent, pressure. 4. Activity coefficients. For nonideal liquids, Raoult’s law must be modified to account for the nonideality in the liquid phase. The “fudge factors” used are called activity coefficients. NC

P = c xjp,syj

(2.68)

j=l

where yj is the activity coefficient for the jth component. The activity coeficient is equal to 1 if the component is ideal. The y’s are functions of composition and temperature 2.2.7 Chemical Kinetics We will be modeling many chemical reactors, and we must be familiar with the basic relationships and terminology used in describing the kinetics (rate of reaction) of chemical reactions. For more details, consult one of the several excellent texts in this field. A. ARRHENIUS TEMPERATURE DEPENDENCE.

The effect of temperature on the specific reaction rate k is usually found to be exponential : k = Cle.-E/RT (2.69)

where k = specific reaction rate a = preexponential factor E = activation energy; shows the temperature dependence of the reaction rate, i.e., the bigger E, the faster the increase in k with increasing temperature (Btu/lb * mol or Cal/g * mol) T = absolute temperature R = perfect-gas constant = 1.99 Btu/lb. mol “R or 1.99 Cal/g. mol K

FUNDAMENTALS

.37

This exponential temperature dependence represents one of the most severe nonlinearities in chemical engineering systems. Keep in mind that the “apparent” temperature dependence of a reaction may not be exponential if the reaction is mass-transfer limited, not chemical-rate limited. If both zones are encountered in the operati...


Similar Free PDFs