Quizzes-07sol PDF

Title Quizzes-07sol
Author Thomas Sun
Course Chemical Reaction Engineering
Institution University of Waterloo
Pages 14
File Size 343.5 KB
File Type PDF
Total Downloads 36
Total Views 140

Summary

Quiz...


Description

CHE 304 (Spring 2007) __________________ LAST NAME, FIRST Quiz #1 Note: Your answers must be correct to 3 significant figures and have the appropriate units. I . Fo rt h eg a sp ha s er e a c t i o n

2 A+B C+3 D

Th er e a c t i o ni sr e v e r s i b l ea tc o n s t a n tt e mpe r a t u r ea n dpr e s s u r e .Th ef e e di st womo l e so fApe r o n emo l eo fB. 1 .Wr i t et h ec o nc e n t r a t i o no fAi nt e r mo fCA0a n dX.

_ _ _ __ _ _ _ _ _ __ _ _

C (1  X ) CA = A0 (1  X / 3) 2 .Wr i t et h ec o nc e n t r a t i o no fCi nt e r mo fCA0a n dX.

__ _ _ _ _ _ __ _ _ _ _ _

C ( X) CC = A0 2(1  X / 3) II The irreversible elementary reaction 2A  B takes place in the gas phase in an isothermal tubular reactor. Th ef e e di st womo l e so fAp e ro n emo l eo fC,a ni n e r t . The entering temperature and pressure are 427oC and 10 atm, respectively. Gas constant R = 0.082 atmL/moloK. 3. Determine the concentration of A at the entrance to the reactor.

____________

. 1 1 6mo l / L CA0 =0

4. If CA0 = 1.0 mol/L, the concentration of A at 90% conversion of A is

____________

CA =0 . 14 3mo l / L

III. (5) Hydrogen gas is fed to a burner, where it is combusted with 300% excess air (21% O 2). Moles of nitrogen required for each mole of hydrogen is ______________ H2 + 0.5O2  H2O Moles of nitrogen = 7.52 moles

IV. The chemical species A is known to decompose according to

A(g) = B(g) + C(g) A rigid container is filled with pure gaseous A at 300 oK and 760 mmHg and then heated. Assume ideal-gas behavior and chemical equilibrium. (6) If the pressure was observed to be 1610 mmHg at 510oK, the mole fraction of A is yA = 0.605 (7) If the fractional conversion of A is 0.50 at 650oK, determine the pressure of the reactor. P = 2470 mmHg V. (8) Th ei r r e v e r s i b l efir s to r d e rr e a c t i o nA Bi sc a r r i e do u ti nat u b u l a rr e a c t o ri nwh i c ht h e v o l u me t r i cflo wr a t eQi sc o n s t a n t .De t e r mi n et h er e a c t o rv o l u mene c e s s a r yt or e d u c et h ee x i t i n g c o n c e n t r a t i o nt o5 %o ft h ee nt e r i n gc o n c e n t r a t i o nwh e nt h ev o l u me t r i cflo wr a t ei s3 0l i t e r s / mi n 1 a n dt h es p e c i ficr a t ec on s t a nt ,k , i s0 . 2 0m-i n . V = 449 liters

VI. The exothermic reaction AB +C was carried out adiabatically and the following data are given:

The entering molar flow rate of A was 400 mol/min. 9) The volume of a CSTR required for 20% conversion is

____________

V =4.8 L

10) The volume of a PFR required for 20% conversion is V = 6.4 L

____________

CHE 304 (Spring 2007) __________________ LAST NAME, FIRST Quiz #2 Note: Your answers must be correct to 3 significant figures and have the appropriate units. I. The gas phase reaction

A + 4B  2C

which is first-order in A and first-order in B is to be carried out isothermally in a plug flow reactor. The entering volumetric flow rate is 4.0 L/min, and the feed is equimolar in A and B. The entering temperature and pressure are 527oC and 8 atm, respectively. You can neglect pressure drop in the reactor. The specific reaction rate at this temperature is 5 L/mol min and the activation energy is 12,000 cal/mol. Gas constant R = 0.082 atmL/moloK = 1.987 cal/moloK 1) Determine the volumetric flow rate when the conversion of A is 25%.

____________

Q = 2.5 L/min 2) Determine the concentration of A at the entrance to the reactor.

____________

CA0 =0 . 0 6 1mo l / L 3) Write the concentration of A in terms of CA0, and X. CA =

____________

C A0 (1  X ) (1  1.5X )

II. For a gas phase reaction where  rA = kCACB What is the effect on the reaction rate of increasing the reaction pressure by 10% while maintaining constant temperature? The reactio rate increase by: A. 10%

B. 100%

C. 121%

D. None of the above

I I I .Dibutyl phthalate (DBP), a plasticizer, is to be produced by reaction of n-butanol phthalate (MBP). The liquid reaction follows an elementary rate law and is catalyzed by H2SO4. MBP + n-butanol  DBP + H2O A stream containing MBP and butanol is to be mixed with the H 2SO4 catalyst immediately before the stream enters the reactor. The concentration of MBP in the stream entering the reactor is 0.4 lbmol/ft3 and the molar feed rate of butanol is five times that of MBP. The specific reaction rate at 100oF is 1.2 ft3/lbmolhr. There is a 1000-gallon CSTR and associated peripheral equipment available for use on this project for 30 day a year (operating 24 h/day). 5) Determine the flow rate in lbmol/hr of DBP leaving the available CSTR to produce 6 million lb/year of DBP (Mw = 278) ____________ 30 lbmol/hr 6) Determine the exit conversion in the available 1000-gal reactor if the DBP flow rate is 20 lbmol/hr (1 ft3 = 7.48 gal.) X = 0.814 7) If the MBP feed rate is 60 lbmol/hr and the exit conversion in the CSTR is 0.4, what conversion would be achieved if a second 1000-gal CSTR were placed in series with the first CSTR? X = 0.786 3A  B

IV) For the reaction

The reaction is irreversible at constant temperature and pressure with pure gas A fed to the reactor. Write the concentration of A in terms of CA0, and X. 1 X CA = CA01 2 X / 3

V) For the reaction

2A  B

The reaction is reversible, non-isothermal with pure gas A fed to the reactor. Write the concentration of A in terms of CA0, T0, T, P0, P, and X. 1  X  P   T0     P CA = CA01 0.5X  0   T 

VI) Ca l c u l a t et h epa r t i a lp r e s s u r eo fmon a t o mi ch y d r o g e ng a sa t1 0 0 0oKa n d1a t mp r e s s u r e . Fo r½H2( g ) H( g ) o =1 2 0 , 0 0 0J / mo l ,g a sc o n s t a n tR=8 , 3 1 4J / mo l oK  G1000 K

t m . 3 91 0-7a PH =5

_ _ _ _ _ _ __ _ _ _ _ _ __

CHE 304 (Winer 2007) __________________ LAST NAME, FIRST Quiz #3 Note: Your answers must be correct to 3 significant figures and have the appropriate units. I. We have a mixture with 2 moles of CH 4 for every mole of O2 at 10 atm. Estimate the adiabatic reactor temperature if all of the available O2 react to form CO2 and H2O. The feed is at 300oC (HRx =  152 kcal/mol, Cp = 7 cal/moloK.). T = 3919oC = 4192oK 2A+B C+3 D

I I .F o rt h eg a sp ha s er e a c t i o n

Th er e a c t i o ni sr e v e r s i b l ea tc o n s t a n tt e mpe r a t u r ea n dpr e s s u r e .Thef e e di st womo l e so fAp e r o n emo l eo fB. n dX. 2 .Wr i t et h ec o nc e n t r a t i o no fAi nt e r mo fCA0a

_ _ _ _ _ __ _ _ _ _ _ _ _

(1 X ) CA =CA01 X / 3 n dX. 3 .Wr i t et h ec o nc e n t r a t i o no fCi nt e r mo fCA0a

__ _ _ _ _ _ __ _ _ _ _ _

X 2 1  X / 3

CC =CA0

III. Dibutyl phthalate (DBP), a plasticizer, is to be produced by reaction of n-butanol phthalate (MBP). The liquid reaction follows an elementary rate law and is catalyzed by H2SO4. MBP + n-butanol  DBP + H2O A stream containing MBP and butanol is to be mixed with the H 2SO4 catalyst immediately before the stream enters the reactor. The concentration of MBP in the stream entering the reactor is 0.2 lbmol/ft3 and the molar feed rate of butanol is five times that of MBP. The specific reaction rate at 100oF is 1.5 ft3/lbmolhr. There is a 500 ft3 CSTR and associated peripheral equipment available for use on this project for 30 day a year (operating 24 h/day). 4) Determine the exit conversion in the available 500 ft 3 reactor if the DBP flow rate is 40 lbmol/hr (1 ft3 = 7.48 gal.) X = 0.691

5) If the MBP feed rate is 60 lbmol/hr and the exit conversion in the CSTR is 0.4, what conversion would be achieved if a second 500 ft3 CSTR were placed in series with the first CSTR? X = 0.806

6) What CSTR volume would be necessary to achieve a conversion of 95% for a molar feed rate of MBP of 60 lbmol/hr? V = 4691 ft3 II. A solute diffuses through a membrane that separates two compartments A and B that have different initial concentrations. The solute concentrations in the two compartments as a function of time, CA and CB are shown below. The volumes of the two compartments are VA and VB. (A) VA > VB

(B) Solute diffuses from compartment B to A.

a . Aa n dBa r et r u e b.Onl yAi st r ue c .On l yBi st r u e

d.Aa n dBa r ef a l s e

10

C

A

5

C

B

0

t

I V.Fo rt h er e a c t i o n A( g )+2 B( g ) C( g )+D( g , l ) Th ef e e dc o n t a i n so n l yAa n dBi ns t o i c h i o me t r i ca mo u nt s .Th et o t a lp r e s s u r ei s1 0 1 . 3k Paa n d s p e c i e sD h a sav a p o rp r e s s u r eo f3 0 . 39kPaa tt h ei s o t h e r ma lr e a c t i o nt e mp e r a t u r eo f30 0oK. Ca l c u l a t et h ec o n v e r s i o na twh i c hc o n d e n s a t i onb e g i n s . X=0 . 9/ 1. 3=0 . 6 9 2 V.Th eg a s p h a s er e a c t i o nA( g) 3 B( g )ob e y sz e r o t h o r d e rki n e t i c swi t hr=0 . 2 5mo l e s / l i t e r h r St a r t i n gwi t hp u r eAa t1a t m, c a l c u l a t et h e a t2 0 0oC.Ga sc o n s t a n tR=0 . 0 82La t m/ mo l oK. t i mef o r9 5 %o ft h eAt ob er e a c t e da wa yi n 9 )ac o n s t a n t v o l u meb a t c hr e a c t o r

_ _ _ _ _ __ _ _ _ _ _

t = 0.098 hr = 5.88 min = 353 s 1 0 )ac o ns t a n t p r e s s u r eb a t c hr e a c t or t=0.0549 hr = 3.29 min = 198 s

_ _ __ _ _ _ _ _ __ _ _ _

CHE 304 (Spring 2007) __________________ LAST NAME, FIRST Quiz #4 Note: Your answers must be correct to 3 significant figures and have the appropriate units. I. The gas phase reaction

AB

has a unimolecular reaction rate constant of 0.0025 min-1 at 90oF. This reaction is to be carried out in parallel tubes 10 ft long and 1 in. inside diameter under a pressure of 150 psia at 260 oF. A and B each have molecular weights of 64. Ideal gas constant R = 10.73 psiaft3/lbmoloR = 1.99 Btu/lbmoloR. The conversion of A is 80%. 1) If 1500 lb/hr of B is required, determine the feed flow rate of A in lbmol/min ____________ FA0 = 0.488 lbmol/min 2) If the activation energy of the reaction is 35,000 Btu/lbmol, the rate constant at 260oF is k = 4.75 min-1 3) If the reaction rate constant at 260oF is 52.6 min-1 and the feed flow rate of A is 1.0 lbmol/min, the required volume of the reactor is V = 1.58 ft3 4) If the reaction rate constant at 260oF is 52.6 min-1, the feed flow rate of A is 1.0 lbmol/min, and there is also an inert flow rate of 1.0 lbmol/min, the required volume of the reactor is V =3.16 ft3 5) If the required volume of the reactor is 1.5 ft3, the number of tubes needed is nt = 28

____________

II. Th eg a sp h a s ec a t a l y z e dh y d r o g e n a t i o no fo c r e s o lt o2 me t h y l c y c l o h e x a n o n ei sg i v e nb y o c r e s o l ( A)+2 H2( B) 2 me t h y l c y c l o h e x a n o n e ( C) Th er e a c t i o nr a t eo nan i c k e l s i l i c ac a t a l y s twa sf o u n dt ob e oC PB,whe r r ek=1 . 7 4mo lo fo c r e s ol / ( k gc a t mi na t m)a t1 7 0 A =k

Th er e a c t i o nmi x t u r ee n t e r st h ep a c k e d b e dr e a c t o ra tat o t a lpr e s s u r eo f5a t m.Th emo l a rf e e d c o n s i s t so f6 7 % H2 a n d3 3 % oc r e s ola tat ot a lmo l a rr a t eo f4 0mo l / mi n . 6) Ne g l e c t i n gp r e s s u r ed r o p ,wr i t et h ec o nc e n t r a t i o nofCA i nt e r mo fCA0a n dX. CA = CA0

(1  X ) (1  2 X / 3)

7) If the pressure drop is not negligible, we need to solve the following ODEs (1  X ) (1  2 X / 3) dX dy = 0.435 y, and =  0.34 , where y = P/P0 2y (1  2 X / 3) dw dw

The above two ODEs can be solved using the following Matlab statements and function A) wspan=0:.1:4.8; [w,xy]=ode45('f4d22b',wspan,[0 0]);

B) wspan=0:.1:4.8; [w,xy]=ode45('f4d22b',wspan,[0 1]);

function wx = f4d22b(W,xy) X=xy(1);y=xy(2); wx(1,1)=0.435*(1-X)*y/(1-2*X/3); wx(2,1)=-0.34*(1-2*X/3)/(2*y);

function wx = f4d22b(W,xy) X=xy(1);y=xy(2); wx(1,1)=0.435*(1-X)*y/(1-2*X/3); wx(2,1)=-0.34*(1-2*X/3)/(2*y);

C) wspan=0:.1:4.8; [w,xy]=ode45('f4d22b',wspan,[0 1]);

D) None of the above

function wx = f4d22(W,xy) X=xy(1);y=xy(2); wx(1,1)=0.435*(1-X)*y/(1-2*X/3); wx(2,1)=-0.34*(1-2*X/3)/(2*y);

I I I .A f e r me nt a t i o nbr ot hc o n s i s t so fa na q u e o u ss o l u t i o no fn u t r i e n t sa n dc e l l s .Ast h ec e l l s g r o w,t h e yc l u s t e ri n t os p h e r i c a lp e l l e t so fr a d i u sR( t ) .Ona v e r a g e ,t h ec e l ld e ns i t yi n s i d ea p e l l e ti s0. 0 4mgo fc e l lma s sp e rc u b i cmi l l i me t e ro fp e l l e tv ol u me .Th ed i s s o l v e do x y g e n c m3.Th ec e l l su t i l i z eo x y g e na tar a t eo f1 . 2mmo lof c on c e n t r a t i o ni nt heb r ot hi s5g/ o x y g e np e rh o u rpe rgr a mo fc e l lma s s ,v i aaz e r o or d e rr e a c t i o n.Th ed i ffu s i o nc o e ffic i e n t fo xy g e nwi t hi nt h ep e l l e ti s1 . 81 0-5c DAB o m2/ s .Th ec e l l sa n db r o t hh a v ed e n s i t i e sc l o s et o t h a tofwa t e r .Th e r ei safin i t ec o n v e c t i v er e s i s t a nc et oma s st r a ns f e rt ot h es u r f a c eoft h e p e l l e t ,s u c ht h a tt h eflu xt ot h es ur f a c ei sgi v e nb y mo l a rflu x= ( C kB  CP) c wh e r eCB i st heb r o t ho x y g e nc o nc e nt r a t i o na n dCP i st h e( u nkn o wn )c o n c e n t r a t i o no fo x y g e n a tt hep e l l e ts u r f a c e . 8) Determine the reaction rate, R, per unit volume of the cell in mol/(cm3s) R = 1.33 10-8 mol/(cm3s) 9 mo ma n d2 k / DAB=4d e t e r mi neCP( g / c m3) 9) I fR = 2.51 0 l /(cm3s), R=5 . 01 0-2c cR

/ c m3 CP = 3.15 1 0-6g

10) If R is the reaction rate per unit cell volume, the differential equation for the concentration of oxygen, CA, i nt h es p he r i c a lp e l l e ti s D D d  2 dC A  d  2 dC A  A) AB r r  +R = 0  R =0 B) AB 2 r dr  dr  dr  r dr  C)

D AB d  2 dC A  r   R = 0 Ans dr  r 2 dr 

D)No n eo ft hea b o v e

CHE 304 (Spring 2007) __________________ LAST NAME, FIRST Quiz #5 Note: Your answers must be correct to 3 significant figures and have the appropriate units. do fs e wa g eo uto fas e we r I.A we l l mi x e ds e wa g el a g o o n( as h a l l o wp o n d )i sr e c e i vi n g4 3 0m3/ 5 2 p i p e .Th el a g o o nh a sas u r f a c ea r e ao f1 0m a n dad e p to f1 . 0m.Th ep o l l u t a n tc o n c e n t r a t i o ni n t h er a ws e wa g ed i s c h a r g i n gi nt ot hel a g o o ni s2 5 0g/ m3.Th eo r g a n i cma t t e r( p o l l u t a n t )i nt h e s e wa g ed e gr a d e sb i o l o g i c a l l yi nt h el a g oo na c c o r d i n gt ofir s t o r d e rki n e t i c s .Th er e a c t i o nr a t e c o n s t a nti s0 . 0 70/ d .As s umi n gn oo t he rwa t e rl o s s e so rg a i n s ,fin dt h es t e a d ys t a t ec o n c e n t r a t i o n o ft h ep o l l u t a n ti nt hel a g o one fflu e n t . CA = 14.5 g/m3 r II.Ana i r b o r n es p he r i c a lc e l l u l a ro r g a n i s m,0 . 01 5c mi nd i a me t e r( D) ,u t i l i z e s4 0 . 0mo lO2 pe h o u r ,p e rgr a mo fc e l lma s s .As s u meS h=k DAB =4( b a s e donDAB i nt h eg a sp h a s e . ) mD/ As s u mez e r o o r d e rki n e t i c sf o rr e s p i r a t i o n .Thed i ffu s i onc oe ffic i e n t t o h r r o O ug ht he 2f 2 c e l l u l a rma t e r i a li s1 0-5 c m2/ sa n dt h ed i ffu s i o nc o e ffic i e nt f i o n r a O i r i s 0 . 1 8 c m / s a t 2 2 9 8oK.Thee q ui l i b r i u mc o n c e n t r a t i o n( CA)o fO2 i nt hec e l l u l a rma t e r i a l si sr e l a t e dt ot h e . 01 0-6pA( p a r t i a lO2 pr e s s u r e( p b yt h er e l a t i o nCA( mo l / c m3)=7 a t m) .De n s i t yo fc e l li s1 A) 3 t m/ mo l oK g / c m .Ai ri sa t1a t m wi t h21mol e% o x y g e n . Ga sc o n s t a n tRg=8 2. 0 6c m3a na i ra tt h es u r f a c eo ft h e 2 )Ats t e a d ys t a t e ,d e t e r mi n et h ec o n c e n t r a t i o no fo x y g e n( mo l / c m3)i c e l l u l a ro r g a n i s m. k / c m3 10-6g m = 8.01 3 )I ft h ec o n c e n t r a t i o no fo x y g e ni na i ra tt h es u r f a c eo ft h ec e l l u l a ro r g a n i s mi s8 . 51 0-6 3 3 mo l / c m ,t h ec o n c e n t r a t i ono fo x y g e n( mol / c m )i nt h ec e l la tt h es u r f a c eo ft h ec e l l u l a r o r g a n i s mi s _ _ _ __ _ _ _ _ _ _ 6 3 mo l / c m CAs|cell = 1.455 1 0

CH2 ) ,i st ob ep r o d u c e di nawe l l s t i r r e ds e mi b a t c hr e a c t o r I I I .He xa me t h y l e n et e t r a a mn i e ,N4( 6 o b ya dd i n g2 0Ca q u e o u sa mmon i as o l u t i o na tac o ns t a n tr a t eo f2 5l i t e r s / mi nt oa ni n i t i a lc ha r g e o ff o r ma l i ns o l u t i o n: 6 HCHO+4 NH3>N4( CH2) H2O 6+6 ( A) ( B) Th er e a c t i o ni si n s t a n t a n e o u s ,i r r e v e r s i bl e ,a n de x ot h e r mi c .Th ei ni t i a lc h a r g eo ff o r ma l i n s o l u t i o ni s5 0 0 0l i t e r s wi t h af o r ma l d e h y d ec o n c e n t r a t i o n ,CAi ,o f2 0 . 0 mol / l i t e r .Th e c o n c e n t r a t i o no fa mmo n i ai nt h es o l ut i o ni sCB =1 2 . 0mo l / l i t e r .He a tc a p a c i t yo fb o t ha mmon i a oC.He a n df or ma l i ns ol u t i oni s1 0 0 0c a l / l i t e r CH2) . T h e a to fr e a c t i o ni s7 4 . 6k c a l / mo lo fN4( 6 i n i t i a lt e mp e r a t u r eo ff o r ma l i ns o l u t i o ni nt h er e a c t o ri s2 5oC. 4 )Th er a t eo fh e a tg e n e r a t e db yt hec h e mi c a lr e a c t i o ni s

__ _ _ _ _ _ __ _ _ _

5 59 5kc a l / mi n 5 )Ti mer e q u i r e df o rc o mp l e t ec o n s u mp t i o no ff o r ma l d e h y d ei s

_ _ _ _ __ _ _ _ _ _ _

t = 222 min I V.Th efir s to r d e rr e a c t i o nA  Bi sc a r r i e do u ti na na d i a b a t i cCSTRwi t hAC l / l i t e r 0=2mo a n dT0=3 00oK.I ti sf o un dt h a t5 0 %c o n v e r s i oni so b t a i n e dwi t h ( =V/ Q)= 4mi n ,a n dt he r e a c t o rt e mp e r a t u r ei s3 5 0oK. s 6 )Th er e a c t i o nr a t ec o n s t a n tka t3 50oKi _ _ _ __ _ _ _ _ _ _ k=0 . 2 5mi n-1 7 )Th er e a c t i o ni si nwa t e rwi t h Cp=1 00 0c a l / l i t e r oK.Fi n dt h eh e a to fr e a c t i o n. _ _ _ __ _ _ _ _ _ _

Hr =  50kc a l / mo l

V.Th ei r r e v e r s i b l e ,l i q u i d p h a s er e a c t i o nA  Bi st ob ec a r r i e do u ti na ni d e a lPFR.Th ei n l e t c o n c e n t r a t i o no fA,CA0,i s2 , 5 0 0mo l / m3,a n dt hef e e dt e mp e r a t u r ei s1 50oC.Th ef r a c t i o n a l c o n v e r s i o no fA i nt h er e a c t o re fflu e n tmu s tb ea tl e a s t0 . 9 0 .Th er e a c t o rwi l lo pe r a t e s1 . 4 0 1 0-4 i s o t h e r ma l l ya t1 5 0oC.Th er e a c t i o ni ss e c o n do r de ri nA.Th er a t ec o n s t a n ta t1 5 0oCi ( molAs ) .At1 5 0oCHRx= 1 65k J / mo l . Th eflo wr a t et ot h er e a c t o ri s0 . 0 13m m3/ / s . 8 )De t e r mi n et hev o l u meo ft h ePFRr e q u i r e df o r90 %c on v e r s i o n.

_ _ _ _ __ _ _ _ _ _

V= 0. 2 5 7m3 9 )De t e r mi n et her a t e( k J / mi n )a twhi c hh e a ti sr e mo v e df r o mt h ewh ol er e a c t o r ._ _ _ __ _ _ _ _ _ _ 5 Q =2.2310 kJ/min

10

VI )( 1 0 )Th ef o l l o wi n gMATLABp r o gr a mc a ne v a l u a t e ( 1) n n 0

A. x = 2; sum = 1; For n=0:10 sum = sum + (1)^n*x^n/factorial(2*n+1); end B. (Ans.) x = 2; sum = 1; z = 1; For n=1:10 z = z*x/(2*n)/(2*n+1); sum = sum+z end

xn f o rx=2 (2 n  1)!

C. x = 2; sum = 1; z = x; For n=1:10 z = z*x/(2*n+1); sum = sum+z end D. None of the above...


Similar Free PDFs