Solution Manual for Fundamentals of Electric Circuits 3rd Sadiku PDF

Title Solution Manual for Fundamentals of Electric Circuits 3rd Sadiku
Author Muin Kashem
Pages 1,119
File Size 108.8 MB
File Type PDF
Total Downloads 30
Total Views 128

Summary

Chapter 1, Solution 1 (a) q = 6.482x1017 x [-1.602x10-19 C] = -0.10384 C (b) q = 1. 24x1018 x [-1.602x10-19 C] = -0.19865 C (c) q = 2.46x1019 x [-1.602x10-19 C] = -3.941 C (d) q = 1.628x1020 x [-1.602x10-19 C] = -26.08 C Chapter 1, Solution 2 (a) i = dq/dt = 3 mA (b) i = dq/dt = (16t + 4) A (c) i =...


Description

Accelerat ing t he world's research.

Solution Manual for Fundamentals of Electric Circuits 3rd Sadiku Muin Kashem

Related papers Solucionario sadiku 3ra edición Julio Sanchez

Download a PDF Pack of t he best relat ed papers 

Chapter 1, Solution 1 (a) q = 6.482x1017 x [-1.602x10-19 C] = -0.10384 C (b) q = 1. 24x1018 x [-1.602x10-19 C] = -0.19865 C (c) q = 2.46x1019 x [-1.602x10-19 C] = -3.941 C (d) q = 1.628x1020 x [-1.602x10-19 C] = -26.08 C Chapter 1, Solution 2 (a) (b) (c) (d) (e)

i = dq/dt = 3 mA i = dq/dt = (16t + 4) A i = dq/dt = (-3e-t + 10e-2t) nA i=dq/dt = 1200π cos 120π t pA i =dq/dt = − e −4t (80 cos 50 t + 1000 sin 50 t ) µ A

Chapter 1, Solution 3 (a) q(t) = ∫ i(t)dt + q(0) = (3t + 1) C (b) q(t) = ∫ (2t + s) dt + q(v) = (t 2 + 5t) mC

(c) q(t) = ∫ 20 cos (10t + π / 6 ) + q(0) = (2sin(10t + π / 6) + 1) µ C

(d)

10e -30t ( −30 sin 40t - 40 cos t) 900 + 1600 = − e - 30t (0.16cos40 t + 0.12 sin 40t) C

q(t) = ∫ 10e -30t sin 40t + q(0) =

Chapter 1, Solution 4

q = ∫ idt = ∫ =

10

−5 5sin 6 π t dt = cos 6π t 6π 0

5 (1 − cos 0.06π ) = 4.698 mC 6π

Chapter 1, Solution 5

q = ∫ idt = ∫ =

1 e dt mC = - e -2t 2

1 (1 − e 4 ) mC = 490 µC 2

Chapter 1, Solution 6

(a) At t = 1ms, i =

dq 80 = = 40 mA dt 2

(b) At t = 6ms, i =

dq = 0 mA dt

(c) At t = 10ms, i =

dq 80 = = - 20 mA 4 dt

Chapter 1, Solution 7 25A, dq  i= = - 25A, dt   25A,

2

-2t

0 0, we have a source-free RLC circuit. α = R/(2L) = (40 + 60)/5 = 20 and ωo =

1 LC

=

1 −3

10 x 2.5

ωo = α leads to critical damping i(t) = [(A + Bt)e-20t], i(0) = 0 = A di/dt = {[Be-20t] + [-20(Bt)e-20t]}, but di(0)/dt = -(1/L)[Ri(0) + vC(0)] = -(1/2.5)[0 + 24] Hence,

B = -9.6 or i(t) = [-9.6te-20t] A

Chapter 8, Solution 17.

i(0) = I0 = 0, v(0) = V0 = 4 x15 = 60 di(0) 1 = − (RI0 + V0 ) = −4(0 + 60) = −240 dt L 1 1 ωo = = = 10 LC 1 1 4 25 R 10 α= = = 20, which is > ωo . 2L 2 1 4 s = −α ± α 2 − ωo2 = −20 ± 300 = −20 ± 10 3 = −2.68, − 37.32 i( t ) = A1e − 2.68t + A 2e −37.32 t di(0) i(0) = 0 = A1 + A 2 , = −2.68A1 − 37.32A 2 = −240 dt This leads to A1 = −6.928 = −A 2

(

i( t ) = 6.928 e −37.32 t − e − 268t

Since, v( t ) =

)

1 t ∫ i( t )dt + 60, we get C 0

v(t) = (60 + 64.53e-2.68t – 4.6412e-37.32t) V

= 20

Chapter 8, Solution 18.

When the switch is off, we have a source-free parallel RLC circuit.

ωo = α < ωo

1 LC

=

1 0.25 x1

 →

α=

= 2,

1 = 0.5 2 RC

underdamped case ω d = ω o − α 2 = 4 − 0.25 = 1.936 2

Io(0) = i(0) = initial inductor current = 20/5 = 4A Vo(0) = v(0) = initial capacitor voltage = 0 V v(t ) = e −αt ( A1 cos ω d t + A2 sin ω d t ) = e −0.5αt ( A1 cos1.936t + A2 sin 1.936t ) v(0) =0 = A1

dv = e −0.5αt (−0.5)( A1 cos1.936t + A2 sin 1.936t ) + e −0.5αt (−1.936 A1 sin 1.936t + 1.936 A2 cos1.936t ) dt (V + RI o ) dv(0) ( 0 + 4) =− o =− = −4 = −0.5 A1 + 1.936 A2 dt RC 1 Thus,

 →

A2 = −2.066

v(t ) = −2.066e −0.5t sin 1.936t

Chapter 8, Solution 19.

For t < 0, the equivalent circuit is shown in Figure (a). 10 Ω

i +

120V

+ −

i

+ v

L

− (a)

i(0) = 120/10 = 12, v(0) = 0

v

C

− (b)

For t > 0, we have a series RLC circuit as shown in Figure (b) with R = 0 = α. 1

ωo =

LC

=

1 4

= 0.5 = ωd

i(t) = [Acos0.5t + Bsin0.5t], i(0) = 12 = A v = -Ldi/dt, and -v/L = di/dt = 0.5[-12sin0.5t + Bcos0.5t], which leads to -v(0)/L = 0 = B Hence,

i(t) = 12cos0.5t A and v = 0.5

However, v = -Ldi/dt = -4(0.5)[-12sin0.5t] = 24sin0.5t V Chapter 8, Solution 20.

For t < 0, the equivalent circuit is as shown below. 2Ω

i

12 + −



vC

+

v(0) = -12V and i(0) = 12/2 = 6A For t > 0, we have a series RLC circuit. α = R/(2L) = 2/(2x0.5) = 2 ωo = 1/ LC = 1 / 0.5x 1 4 = 2 2 Since α is less than ωo, we have an under-damped response. ωd = ωo2 − α 2 = 8 − 4 = 2

i(t) = (Acos2t + Bsin2t)e-2t i(0) = 6 = A

di/dt = -2(6cos2t + Bsin2t)e-2t + (-2x6sin2t + 2Bcos2t)e-αt di(0)/dt = -12 + 2B = -(1/L)[Ri(0) + vC(0)] = -2[12 – 12] = 0 Thus, B = 6 and i(t) = (6cos2t + 6sin2t)e-2t A Chapter 8, Solution 21.

By combining some resistors, the circuit is equivalent to that shown below. 60||(15 + 25) = 24 ohms. 12 Ω

24V

6Ω

t=0

i

3H

+ −

24 Ω

+ (1/27)F

v

− At t = 0-,

i(0) = 0, v(0) = 24x24/36 = 16V

For t > 0, we have a series RLC circuit.

R = 30 ohms, L = 3 H, C = (1/27) F

α = R/(2L) = 30/6 = 5 ωo = 1 / LC = 1 / 3x1 / 27 = 3, clearly α > ωo (overdamped response)

s1,2 = − α ± α 2 − ωo2 = −5 ± 5 2 − 3 2 = -9, -1 v(t) = [Ae-t + Be-9t], v(0) = 16 = A + B

(1)

i = Cdv/dt = C[-Ae-t - 9Be-9t] i(0) = 0 = C[-A – 9B] or A = -9B From (1) and (2),

B = -2 and A = 18. Hence,

v(t) = (18e-t – 2e-9t) V

(2)

Chapter 8, Solution 22. α = 20 = 1/(2RC) or RC = 1/40

(1)

ωd = 50 = ωo2 − α 2 which leads to 2500 + 400 = ωo2 = 1/(LC)

Thus, LC 1/2900

(2)

In a parallel circuit, vC = vL = vR But,

iC = CdvC/dt or iC/C = dvC/dt = -80e-20tcos50t – 200e-20tsin50t + 200e-20tsin50t – 500e-20tcos50t = -580e-20tcos50t iC(0)/C = -580 which leads to C = -6.5x10-3/(-580) = 11.21 µF R = 1/(40C) = 106/(2900x11.21) = 2.23 kohms L = 1/(2900x11.21) = 30.76 H

Chapter 8, Solution 23. Let Co = C + 0.01. For a parallel RLC circuit, α = 1/(2RCo), ωo = 1/ LC o α = 1 = 1/(2RCo), we then have Co = 1/(2R) = 1/20 = 50 mF ωo = 1/ 0.5x 0.5 = 6.32 > α (underdamped) Co = C + 10 mF = 50 mF or 40 mF Chapter 8, Solution 24. For t < 0, u(-t) 1, namely, the switch is on. v(0) = 0, i(0) = 25/5 = 5A For t > 0, the voltage source is off and we have a source-free parallel RLC circuit. α = 1/(2RC) = 1/(2x5x10-3) = 100

ωo = 1/ LC = 1 / 0.1x10 −3 = 100 ωo = α (critically damped) v(t) = [(A1 + A2t)e-100t] v(0) = 0 = A1 dv(0)/dt = -[v(0) + Ri(0)]/(RC) = -[0 + 5x5]/(5x10-3) = -5000 But,

dv/dt = [(A2 + (-100)A2t)e-100t]

Therefore, dv(0)/dt = -5000 = A2 – 0 v(t) = -5000te-100t V Chapter 8, Solution 25. In the circuit in Fig. 8.76, calculate io(t) and vo(t) for t>0. 1H

2Ω

30V

+ −

io(t) +

t=0, note this is a make before break switch so the inductor current is not interrupted.

Figure 8.78

8Ω

For Problem 8.25.

At t = 0-, vo(0) = (8/(2 + 8)(30) = 24 For t > 0, we have a source-free parallel RLC circuit. α = 1/(2RC) = ¼ ωo = 1/ LC = 1 / 1x 1 4 = 2 Since α is less than ωo, we have an under-damped response. ωd = ωo2 − α 2 = 4 − (1 / 16) = 1.9843

vo(t) = (A1cosωdt + A2sinωdt)e-αt

(1/4)F

vo(t) −

vo(0) = 24 = A1 and io(t) = C(dvo/dt) = 0 when t = 0. dvo/dt = -α(A1cosωdt + A2sinωdt)e-αt + (-ωdA1sinωdt + ωdA2cosωdt)e-αt at t = 0, we get dvo(0)/dt = 0 = -αA1 + ωdA2 Thus, A2 = (α/ωd)A1 = (1/4)(24)/1.9843 = 3.024 vo(t) = (24cosωdt + 3.024sinωdt)e-t/4 volts Chapter 8, Solution 26. s2 + 2s + 5 = 0, which leads to s1,2 =

− 2 ± 4 − 20 = -1±j4 2

i(t) = Is + [(A1cos4t + A2sin4t)e-t], Is = 10/5 = 2 i(0) = 2 = = 2 + A1, or A1 = 0 di/dt = [(A2cos4t)e-t] + [(-A2sin4t)e-t] = 4 = 4A2, or A2 = 1 i(t) = 2 + sin4te-t A Chapter 8, Solution 27.

s2 + 4s + 8 = 0 leads to s =

− 4 ± 16 − 32 = −2 ± j2 2

v(t) = Vs + (A1cos2t + A2sin2t)e-2t 8Vs = 24 means that Vs = 3 v(0) = 0 = 3 + A1 leads to A1 = -3 dv/dt = -2(A1cos2t + A2sin2t)e-2t + (-2A1sin2t + 2A2cos2t)e-2t 0 = dv(0)/dt = -2A1 +2A2 or A2 = A1 = -3 v(t) = [3 – 3(cos2t + sin2t)e-2t] volts

Chapter 8, Solution 28.

The characteristic equation is s2 + 6s + 8 with roots − 6 ± 36 − 32 s1, 2 = = −4,−2 2 Hence,

i (t ) = I s + Ae −2t + Be −4t 8I s = 12

 →

i (0) = 0

 →

I s = 1.5 0 = 1.5 + A + B

(1)

di = −2 Ae − 2t − 4 Be − 4t dt di(0) = 2 = −2 A − 4 B  → 0 = 1 + A + 2 B dt Solving (1) and (2) leads to A=-2 and B=0.5.

(2)

i (t ) = 1.5 − 2e −2t + 0.5e −4t A

Chapter 8, Solution 29.

(a)

s2 + 4 = 0 which leads to s1,2 = ±j2 (an undamped circuit) v(t) = Vs + Acos2t + Bsin2t 4Vs = 12 or Vs = 3 v(0) = 0 = 3 + A or A = -3 dv/dt = -2Asin2t + 2Bcos2t dv(0)/dt = 2 = 2B or B = 1, therefore v(t) = (3 – 3cos2t + sin2t) V

(b)

s2 + 5s + 4 = 0 which leads to s1,2 = -1, -4 i(t) = (Is + Ae-t + Be-4t) 4Is = 8 or Is = 2 i(0) = -1 = 2 + A + B, or A + B = -3

(1)

di/dt = -Ae-t - 4Be-4t di(0)/dt = 0 = -A – 4B, or B = -A/4 From (1) and (2) we get A = -4 and B = 1 i(t) = (2 – 4e-t + e-4t) A (c)

s2 + 2s + 1 = 0, s1,2 = -1, -1 v(t) = [Vs + (A + Bt)e-t], Vs = 3. v(0) = 5 = 3 + A or A = 2 dv/dt = [-(A + Bt)e-t] + [Be-t] dv(0)/dt = -A + B = 1 or B = 2 + 1 = 3 v(t) = [3 + (2 + 3t)e-t] V

Chapter 8, Solution 30.

s1 = −500 = −α + α 2 − ω o ,

s 2 = −800 = −α − α 2 − ω o

2

s1 + s 2 = −1300 = −2α

 →

α = 650 =

2

R 2L

Hence, L= s1 − s 2 = 300 = 2 α 2 − ω o

R 200 = = 153.8 mH 2α 2 x650 2

C=

 →

ω o = 623.45 =

1 = 16.25µF (632.45) 2 L

1 LC

(2)

Chapter 8, Solution 31.

For t = 0-, we have the equivalent circuit in Figure (a). For t = 0+, the equivalent circuit is shown in Figure (b). By KVL, v(0+) = v(0-) = 40, i(0+) = i(0-) = 1 By KCL, 2 = i(0+) + i1 = 1 + i1 which leads to i1 = 1. By KVL, -vL + 40i1 + v(0+) = 0 which leads to vL(0+) = 40x1 + 40 = 80 vL(0+) = 80 V, 40 Ω i

vC(0+) = 40 V

10 Ω

i1 40 Ω

+

+

+

v

50V



+ −

v

vL



10 Ω



0.5H

(a)

50V

(b)

Chapter 8, Solution 32.

For t = 0-, the equivalent circuit is shown below. 2A

i +

v



6Ω

i(0-) = 0, v(0-) = -2x6 = -12V For t > 0, we have a series RLC circuit with a step input. α = R/(2L) = 6/2 = 3, ωo = 1/ LC = 1 / 0.04 s = − 3 ± 9 − 25 = −3 ± j4 Thus, v(t) = Vf + [(Acos4t + Bsin4t)e-3t]

+ −

where Vf = final capacitor voltage = 50 V v(t) = 50 + [(Acos4t + Bsin4t)e-3t] v(0) = -12 = 50 + A which gives A = -62 i(0) = 0 = Cdv(0)/dt dv/dt = [-3(Acos4t + Bsin4t)e-3t] + [4(-Asin4t + Bcos4t)e-3t] 0 = dv(0)/dt = -3A + 4B or B = (3/4)A = -46.5 v(t) = {50 + [(-62cos4t – 46.5sin4t)e-3t]} V Chapter 8, Solution 33.

We may transform the current sources to voltage sources. For t = 0-, the equivalent circuit is shown in Figure (a). 10 Ω

i

i

+ 30V

+ −

1H

+

v

5Ω



v

10 Ω

30V

4F

+ −



(a)

(b)

i(0) = 30/15 = 2 A, v(0) = 5x30/15 = 10 V For t > 0, we have a series RLC circuit. α = R/(2L) = 5/2 = 2.5 ω o = 1 / LC = 1 / 4 = 0.25, clearly α > ωo (overdamped response)

s1,2 = − α ± α 2 − ω 2o = −2.5 ± 6.25 − 0.25 = -4.95, -0.05 v(t) = Vs + [A1e-4.95t + A2e-0.05t], v = 20. v(0) = 10 = 20 + A1 + A2

(1)

i(0) = Cdv(0)/dt or dv(0)/dt = 2/4 = 1/2 Hence,

½ = -4.95A1 – 0.05A2

From (1) and (2),

A1 = 0, A2 = -10.

(2)

v(t) = {20 – 10e-0.05t} V Chapter 8, Solution 34.

Before t = 0, the capacitor acts like an open circuit while the inductor behaves like a short circuit. i(0) = 0, v(0) = 20 V For t > 0, the LC circuit is disconnected from the voltage source as shown below. Vx + − i

(1/16)F (¼) H

This is a lossless, source-free, series RLC circuit. α = R/(2L) = 0, ωo = 1/ LC = 1/

1 1 + = 8, s = ±j8 16 4

Since α is less than ωo, we have an underdamped response. Therefore, i(t) = A1cos8t + A2sin8t where i(0) = 0 = A1 di(0)/dt = (1/L)vL(0) = -(1/L)v(0) = -4x20 = -80 However, di/dt = 8A2cos8t, thus, di(0)/dt = -80 = 8A2 which leads to A2 = -10 Now we have

i(t) = -10sin8t A

Chapter 8, Solution 35. At t = 0-, iL(0) = 0, v(0) = vC(0) = 8 V For t > 0, we have a series RLC circuit with a step input. α = R/(2L) = 2/2 = 1, ωo = 1/ LC = 1/ 1 / 5 =

5

s1,2 = − α ± α 2 − ω 2o = −1 ± j2 v(t) = Vs + [(Acos2t + Bsin2t)e-t], Vs = 12. v(0) = 8 = 12 + A or A = -4, i(0) = Cdv(0)/dt = 0. But dv/dt = [-(Acos2t + Bsin2t)e-t] + [2(-Asin2t + Bcos2t)e-t] 0

= dv(0)/dt = -A + 2B or 2B = A = -4 and B = -2 v(t) = {12 – (4cos2t + 2sin2t)e-t V.

Chapter 8, Solution 36. For t = 0-, 3u(t) = 0. Thus, i(0) = 0, and v(0) = 20 V. For t > 0, we have the series RLC circuit shown below. 10 Ω

i

10 Ω

5H

+ 15V

+ −

2Ω

20 V

0.2 F

+ −

v −

α = R/(2L) = (2 + 5 + 1)/(2x5) = 0.8 ωo = 1/ LC = 1/ 5x 0.2 = 1

s1,2 = − α ± α 2 − ω2o = −0.8 ± j0.6 v(t) = Vs + [(Acos0.6t + Bsin0.6t)e-0.8t] Vs = 15 + 20 = 35V and v(0) = 20 = 35 + A or A = -15 i(0) = Cdv(0)/dt = 0 But dv/dt = [-0.8(Acos0.6t + Bsin0.6t)e-0.8t] + [0.6(-Asin0.6t + Bcos0.6t)e-0.8t] 0

= dv(0)/dt = -0.8A + 0.6B which leads to B = 0.8x(-15)/0.6 = -20 v(t) = {35 – [(15cos0.6t + 20sin0.6t)e-0.8t]} V

i = Cdv/dt = 0.2{[0.8(15cos0.6t + 20sin0.6t)e-0.8t] + [0.6(15sin0.6t – 20cos0.6t)e-0.8t]} i(t) = [(5sin0.6t)e-0.8t] A Chapter 8, Solution 37. For t = 0-, the equivalent circuit is shown below.

+

i2

6Ω

6Ω

6Ω v(0) 30V

+ −

i1

10V

+ −



18i2 – 6i1 = 0 or i1 = 3i2

(1)

-30 + 6(i1 – i2) + 10 = 0 or i1 – i2 = 10/3

(2)

From (1) and (2).

i1 = 5, i2 = 5/3 i(0) = i1 = 5A -10 – 6i2 + v(0) = 0

v(0) = 10 + 6x5/3 = 20 For t > 0, we have a series RLC circuit. R = 6||12 = 4 ωo = 1/ LC = 1/ (1 / 2)(1 / 8) = 4 α = R/(2L) = (4)/(2x(1/2)) = 4 α = ωo, therefore the circuit is critically damped v(t) = Vs +[(A + Bt)e-4t], and Vs = 10

v(0) = 20 = 10 + A, or A = 10 i = Cdv/dt = -4C[(A + Bt)e-4t] + C[(B)e-4t] i(0) = 5 = C(-4A + B) which leads to 40 = -40 + B or B = 80 i(t) = [-(1/2)(10 + 80t)e-4t] + [(10)e-4t] i(t) = [(5 – 40t)e-4t] A Chapter 8, Solution 38. At t = 0-, the equivalent circuit is as shown. 2A + i 10 Ω v

i1 5Ω



10 Ω

i(0) = 2A, i1(0) = 10(2)/(10 + 15) = 0.8 A v(0) = 5i1(0) = 4V For t > 0, we have a source-free series RLC circuit. R = 5||(10 + 10) = 4 ohms ωo = 1/ LC = 1/ (1 / 3)(3 / 4) = 2 α = R/(2L) = (4)/(2x(3/4)) = 8/3 s1,2 = − α ± α 2 − ω 2o = -4.431, -0.903 i(t) = [Ae-4.431t + Be-0.903t] i(0) = A + B = 2

(1)

di(0)/dt = (1/L)[-Ri(0) + v(0)] = (4/3)(-4x2 + 4) = -16/3 = -5.333 Hence, -5.333 = -4.431A – 0.903B

(2)

From (1) and (2), A = 1 and B = 1. i(t) = [e-4.431t + e-0.903t] A Chapter 8, Solution 39. For t = 0-, the equivalent circuit is shown in Figure (a). Where 60u(-t) = 60 and 30u(t) = 0. 30 Ω

60V

+ −

+ v − 20 Ω

(a)

30 Ω

0.5F

0.25H

20 Ω 30V

(b)

v(0) = (20/50)(60) = 24 and i(0) = 0

+ −

For t > 0, the circuit is shown in Figure (b). R = 20||30 = 12 ohms ωo = 1/ LC = 1/ (1 / 2)(1 / 4) =

8

α = R/(2L) = (12)/(0.5) = 24 Since α > ωo, we have an overdamped response. s1,2 = − α ± α 2 − ω 2o = -47.833, -0.167 v(t) = Vs + [Ae-47.833t + Be-0.167t], Vs = 30

Thus,

v(0) = 24 = 30 + A + B or -6 = A + B

(1)

i(0) = Cdv(0)/dt = 0 But,

dv(0)/dt = -47.833A – 0.167B = 0 B = -286.43A

From (1) and (2),

(2)

A = 0.021 and B = -6.021

v(t) = 30 + [0.021e-47.833t – 6.021e-0.167t] V Chapter 8, Solution 40. At t = 0-, vC(0) = 0 and iL(0) = i(0) = (6/(6 + 2))4 = 3A For t > 0, we have a series RLC circuit with a step input as shown below. i

0.02 F

2H +

6Ω

v

14 Ω −

24V

12V

+ −

ωo = 1/ LC = 1/ 2 x 0.02 = 5 α = R/(2L) = (6 + 14)/(2x2) = 5

+ −

Since α = ωo, we have a critically damped response. v(t) = Vs + [(A + Bt)e-5t], Vs = 24 – 12 = 12V v(0) = 0 = 12 + A or A = -12 i = Cdv/dt = C{[Be-5t] + [-5(A + Bt)e-5t]} i(0) = 3 = C[-5A + B] = 0.02[60 + B] or B = 90 Thus, i(t) = 0.02{[90e-5t] + [-5(-12 + 90t)e-5t]} i(t) = {(3 – 9t)e-5t} A Chapter 8, Solution 41. At t = 0-, the switch is open. i(0) = 0, and v(0) = 5x100/(20 + 5 + 5) = 50/3 For t > 0, we have a series RLC circuit shown in Figure (a). After source transformation, it becomes that shown in Figure (b). 10 H 4Ω 5A

20 Ω

5Ω

1H

i +

10 µF 20V

+ −

0.04F

v −

(a)

(b) ωo = 1/ LC = 1/ 1x1 / 25 = 5 α = R/(2L) = (4)/(2x1) = 2

s1,2 = − α ± α 2 − ω 2o = -2 ± j4.583 Thus,

v(t) = Vs + [(Acosωdt + Bsinωdt)e-2t], where ωd = 4.583 and Vs = 20 v(0) = 50/3 = 20 + A or A = -10/3

i(t) = Cdv/dt = C(-2) [(Acosωdt + Bsinωdt)e-2t] + Cωd[(-Asinωdt + Bcosωdt)e-2t] i(0) = 0 = -2A + ωdB B = 2A/ωd = -20/(3x4.583) = -1.455 i(t) = C{[(0cosωdt + (-2B - ωdA)sinωdt)]e-2t} = (1/25){[(2.91 + 15.2767) sinωdt)]e-2t} i(t) = {0.7275sin(4.583t)e-2t} A Chapter 8, Solution 42. For t = 0-, we have the equivalent circuit as shown in Figure (a). i(0) = i(0) = 0, and v(0) = 4 – 12 = -8V 4V − +

1Ω

5Ω

6Ω

12V + −

i

1H

+ v(0)

+ − +

12V



v

0.04F



(a) (b) For t > 0, the circuit becomes that shown in Figure (b) after source transformation. ωo = 1/ LC = 1/ 1x1 / 25 = 5 α = R/(2L) = (6)/(2) = 3 s1,2 = − α ± α 2 − ω 2o = -3 ± j4 Thus,

v(t) = Vs + [(Acos4t + Bsin4t)e-3t], Vs = -12 v(0) = -8 = -12 + A or A = 4

i = Cdv/dt, or i/C = dv/dt = [-3(Acos4t + Bsin4t)e-3t] + [4(-Asin4t + Bcos4t)e-3t] i(0) = -3A + 4B or B = 3 v(t) = {-12 + [(4cos4t + 3sin4t)e-3t]} A

Chapter 8, Solution 43. For t>0, we have a source-free series RLC circuit.

α=

R 2L

R = 2αL = 2 x8 x0.5 = 8Ω

 →

ω d = ω o 2 − α 2 = 30 ωo =

1 LC

ω o = 900 − 64 = 836

 →

 →

C=

1

ω oL 2


Similar Free PDFs