solutions of book PDF

Title solutions of book
Course Circuitos electricos
Institution ITM University
Pages 203
File Size 9.7 MB
File Type PDF
Total Downloads 667
Total Views 785

Summary

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1By D. A. Neamen Exercise Solutions Chapter 1####### Exercise SolutionsEX1.3/ 2 exp 2g iE nBT kT⎛⎞− = ⎜⎟ ⎝⎠GaAs: ()()()()14 3/ 2 61. 2 10 300 exp 2 86 10 300ni −⎛⎞ − =× ⎜⎟ ⎜⎟× ⎝⎠or63 nci 1 10 m− =×Ge: ()()()()⎟⎟ ⎠⎞ ⎜⎜ ⎝⎛×− = × − 286 10...


Description

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 1 Exercise Solutions EX1.1 ⎛ −E ⎞ ni = BT 3 / 2 exp ⎜ g ⎟ ⎝ 2kT ⎠

GaAs: ni = ( 2.1 ×1014 ) ( 300 )

⎛ ⎞ − 1.4 ⎟ or ni = 1.8 ×106 cm−3 exp ⎜ −6 ⎜ 2 (86 × 10 ) (300 ) ⎟ ⎝ ⎠

3/2

⎛ − 0.66 ⎞ ⎟ or ni = 2.40 × 1013 cm−3 exp⎜⎜ ⎟ −6 × ( ) ⎝ 2 86 10 300 ⎠ ______________________________________________________________________________________

(

)

Ge: n i = 1.66 × 10 15 (300 )

3/ 2

(

)

EX1.2 (a) (i)

no = N d = 2 ×1016 cm 2

po =

(

2

= 1.125 ×10 4 cm −3

−3

(

)

2

ni 1.5 × 1010 = po 10 15

no =

no = N d = 2 × 1016 cm 2

po =

(ii)

2

ni 1.5 × 1010 = no 2 × 1016

(ii) p o = N a = 10 15 cm

(b) (i)

)

(

ni 1.8× 106 = no 2 × 1016

p o = N a = 1015 cm 2

(

−3

)

= 2.25 × 105 cm −3 −3

2

=1.62 ×10 −4 cm −3

−3

)

2

ni 1.8 × 10 6 = = 3.24 × 10− 3cm −3 po 10 15 ______________________________________________________________________________________ no =

EX1.3 (a) For n-type;

ρ = (b) J =

1

ρ

1 1 = = 0.046 ohm-cm −19 eμ n N d 1.6 × 10 (6800 ) 2 × 1016

(

)

(

)

⋅ Ε ⇒ Ε = ρJ = (0.046)(175) = 8.04 V/cm

--------------------------------------------------------------------------------------------------------------------------------EX1.4 Diffusion current density due to holes: dp J p = −eD p dx ⎛ − 1⎞ ⎛ −x ⎞ = − eD p ( 1016 ) ⎜ ⎟ exp ⎜ ⎟ ⎜L ⎟ ⎜L ⎟ ⎝ p⎠ ⎝ p⎠

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ (a) At x = 0 ( 1.6× 10−19 ) (10 )(1016 ) 16 A / cm 2 Jp = = 10 −3 (b) At x = 10−3 cm ⎛ − 10−3 ⎞ J p = 16exp ⎜ − 3 ⎟ = 5.89 A / cm 2 ⎝ 10 ⎠ ______________________________________________________________________________________ EX1.5

( )( ) ( ) ( )( ) ( )

⎡ 1016 1017 ⎤ (a) Vbi = (0.026) ln ⎢ ⎥ = 1.23 V ⎢⎣ 1.8× 106 2 ⎥⎦ ⎡ 10 16 10 17 ⎤ (b) Vbi = (0.026) ln⎢ ⎥ = 0.374 V ⎢⎣ 2.4 ×1013 2 ⎥⎦ ______________________________________________________________________________________

EX1.6 −1/ 2

⎛ V ⎞ C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠ and ⎡N N ⎤ Vbi = VT ln ⎢ a 2 d ⎥ ⎣ ni ⎦

⎡( 1017 )( 1016) ⎤ ⎥ = 0.757 V = ( 0.026) ln ⎢ ⎢ (1.5 ×1010 )2 ⎥ ⎣ ⎦ − 1/ 2

5 ⎞ ⎛ Then 0.8 = C jo ⎜ 1 + ⎟ ⎝ 0.757 ⎠ or C jo = 2.21 pF

= C jo ( 7.61)

−1/ 2

______________________________________________________________________________________ EX1.7 ⎛I (a) VD = VT ln⎜⎜ D ⎝I S

⎞ ⎟ ⎟ ⎠

⎛ 50 × 10− 6 ⎞ ⎟ = 0.563 V (i) V D = ( 0.026) ln⎜⎜ −14 ⎟ ⎝ 2× 10 ⎠ ⎛ 10 −3 ⎞ ⎟ = 0.641 V (ii) V D = (0.026) ln⎜⎜ −14 ⎟ ⎝ 2× 10 ⎠ ⎛ 50 × 10 −6 ⎞ ⎟ = 0.443 V (b) (i) V D = (0.026) ln⎜⎜ −12 ⎟ ⎝ 2× 10 ⎠ ⎛ 10 −3 ⎞ ⎟ = 0.521 V (ii) V D = (0.026) ln⎜⎜ −12 ⎟ ⎝ 2× 10 ⎠ ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ EX1.8 ⎛V ⎞ VPS = ID R + VD and I D ≅ I S exp ⎜ D ⎟ ⎝ VT ⎠ ( 4 − VD ) so 4 = I D ( 4 × 103 ) + VD ⇒ I D = 4 ×103 and ⎛ V ⎞ I D = (10− 12 ) exp ⎜ D ⎟ ⎝ 0.026 ⎠ By trial and error, we find I D ≅ 0.866 mA and VD ≅ 0.535 V. ______________________________________________________________________________________

EX1.9

V PS − Vγ

8 − 0.7 = 6.08 k Ω ⇒R = R 1.20 4 − 0 .7 = 0.9429 mA (b) ID = 3 .5 PD = I DV D = (0.9429 )(0.7 ) = 0.66 mW ______________________________________________________________________________________ ID =

(a)

EX1.10 PSpice Analysis ______________________________________________________________________________________ EX1.11 8 − 0 .7 = 0.365 mA 20 V 0.026 rd = T = ⇒ 71.2 Ω I D 0.365

(a) I D =

0.25 sin ωt ⇒ 12.5 sin ω t ( μ A) 20 + 0.0712 8 − 0 .7 = 0.73 mA (b) I D = 10 0.026 rd = ⇒ 35.6 Ω 0.73 0.25 sin ω t ⇒ 24.9 sin ω t ( μ A) id = 10 + 0.0356 ______________________________________________________________________________________ id =

EX1.12 ⎛I ⎞ ⎛ 1.2 ×10 −3 ⎞ or VD = 0.6871 V For the pn junction diode, VD ≅ VT ln ⎜ D ⎟ = ( 0.026) ln ⎜ −15 ⎟ ⎝ IS ⎠ ⎝ 4 × 10 ⎠ The Schottky diode voltage will be smaller, so V D = 0.6871 − 0.265 = 0.4221 V ⎛V ⎞ Now ID ≅ IS exp ⎜ D ⎟ ⎝ VT ⎠

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ or

1.2× 10− 3 ⇒ I S = 1.07× 10− 10 A ⎛ 0.4221 ⎞ exp ⎜ ⎟ ⎝ 0.026 ⎠ ______________________________________________________________________________________ IS =

EX1.13 P = I ⋅VZ ⇒ 10 = I ( 5.6) ⇒ I = 1.79 mA 10 − 5.6 = 1.79 ⇒ R = 2.46 kΩ R ______________________________________________________________________________________

Also I =

Test Your Understanding Solutions TYU1.1 (a) T = 400K ⎛ −E g ⎞ Si: ni = BT 3 / 2 exp ⎜ ⎟ ⎝ 2 kT ⎠ ni = (5.23 ×1015

) (400 )

3/2

⎡ ⎤ − 1.1 ⎥ exp ⎢ ⎢ 2 ( 86 ×10− 6 ) ( 400 ) ⎥ ⎣ ⎦

or ni = 4.76 × 1012 c m− 3

Ge: ni = (1.66 ×1015 )( 400 )

3/2

⎡ ⎤ − 0.66 ⎥ exp ⎢ −6 ⎢⎣ 2 (86 ×10 ) (400 ) ⎥⎦

or ni = 9.06 ×10 14 cm GaAs:

−3

ni = ( 2.1 ×10 14 ) ( 400 )

⎡ ⎤ − 1.4 ⎥ exp ⎢ −6 ⎢ 2 ( 86 ×10 ) (400 )⎥ ⎣ ⎦

3/2

or ni = 2.44 × 109 c m−3 (b) T = 250 K

Si: ni = ( 5.23× 10 15) ( 250)

3/2

⎡ ⎤ − 1.1 exp ⎢ ⎥ ⎢⎣ 2 ( 86 × 10 −6 ) ( 250 ) ⎥⎦

or ni = 1.61× 108 cm −3

Ge: n i = ( 1.66 × 10 15) ( 250 ) or ni = 1.42 × 1012 c m −3

3/2

⎡ ⎤ −0.66 ⎥ exp ⎢ −6 ⎢ 2 ( 86 × 10 ) ( 250) ⎥ ⎣ ⎦

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ GaAs: ni = ( 2.10 ×1014 )( 250)

3/2

⎡ ⎤ −1.4 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 ×10 ) (250 )⎥⎦

or −

ni = 6.02 × 103 c m 3 ______________________________________________________________________________________

TYU1.2

(

)

(

)

(a) σ = eμ p N a = 1.6 ×10 −19 ( 480) 2 ×1015 = 0.154 (ohm-cm)

ρ=

1

σ

=

1 = 6.51 Ω -cm 0.1536

(

)

(

)

(b) σ =e μn N d = 1.6 ×10 −19 (1350) 2 ×10 17 = 43.2 (ohm-cm)

ρ=

1

σ

=

−1

−1

1 = 0.0231Ω -cm 43.2

________________________________________________________________________ TYU1.3 J = σ Ε = ( 0.154)( 4) = 0.616 A/cm

(a)

2

(b) J = σ Ε = (43.2)(4) = 172.8 A/cm 2 ______________________________________________________________________________________ TYU1.4

(a)

J n = eDn

⎛ 1015 − 1016 ⎞ dn Δn so J n = 1.6 × 10− 19 (35 ) ⎜ = eDn −4 ⎟ Δx dx ⎝ 0 − 2.5 ×10 ⎠

(

)

or J n = 202 A / cm 2

(b)

J p = − eD p

⎛ 1014 − 5 × 1015 ⎞ dp Δp 19 = − eD p so J p = − 1.6 ×10 − (12.5 ) ⎜ −4 ⎟ dx Δx ⎝ 0 − 4 ×10 ⎠

(

)

or

J p = −24.5 A / cm 2 ______________________________________________________________________________________ TYU1.5 (a) no = Nd = 8× 1015 cm −3 ni2 ( 1.5 × 10 ) = = 2.81× 104 cm −3 no 8 × 1015 10

po =

2

(b) n = no + δ n = 8 ×1015 + 0.1× 1015 or n = 8.1 ×1015 cm −3 p = po + δ p = 2.81× 10 4 + 10 14 or − p ≅1014 cm 3 ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ TYU1.6 ⎛N N (a) Vbi = VT ln⎜⎜ a 2 d ⎝ ni

(

)(

⎡ 1015 5× 1016 ⎞ ⎟ = (0.026) ln⎢ 2 ⎟ ⎢⎣ 1.5 ×10 10 ⎠

( )( ( ( )( (

(

)

)⎤⎥ = 0.679 V ⎥⎦

)

⎡ 1015 5 ×1016 ⎤ (b) Vbi = (0.026) ln⎢ ⎥ = 1.15 V ⎢⎣ 1.8 × 10 6 2 ⎥⎦ ⎡ 1015 5 ×1016 ⎤ (c) Vbi = (0.026 )ln⎢ ⎥ = 0.296 V ⎢⎣ 2.4 × 1013 2 ⎥⎦ ______________________________________________________________________________________

)

)

)

TYU1.7 ⎛V (a) (i) I D = I S exp⎜⎜ D ⎝ VT

(

)

(

)

⎞ ⎛ 0.55 ⎞ ⎟ = 10 −16 exp ⎜ ⎟ ⇒ 0.154 μ A ⎟ ⎝ 0.026 ⎠ ⎠

(

)

⎛ 0.65 ⎞ ⎟ ⇒ 7.20 μ A (ii) I D = 10 −16 exp⎜ ⎝ 0.026 ⎠ ⎛ 0.75 ⎞ (ii) ID = 10 −16 exp⎜ ⎟ ⇒ 0.337 mA ⎝ 0.026 ⎠

(b) (i) ID = − 10 −16 A (ii) I D = − 10 − 16 A ______________________________________________________________________________________ TYU1.8 ΔT = 100C so ΔVD ≅ 2 ×100 = 200 mV Then VD = 0 .650 − 0 .20 = 0.450 V ______________________________________________________________________________________ TYU1.9

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ TYU1.10 (a) ID = 0 2 − 0.7 = 0.325 mA 4 5 − 0.7 = 1.075 mA (c) ID = 4 (d) ID = 0 (e) ID = 0 ______________________________________________________________________________________

(b)

ID =

TYU1.11 P = I DVD ⇒ 1.05 = I D (0.7 ) so I D = 1 .5 mA VPS − Vγ

10 − 0.7 = ⇒ R = 6.2 kΩ ID 1.5 ______________________________________________________________________________________

Now R =

TYU1.12 ID 0.8 = = 30.8 mS VT 0.026 ______________________________________________________________________________________ gd =

TYU1.13 V T 0.026 = = 2.6 k Ω I D 0.010 0.026 rd = ⇒ 260 Ω 0.10 0.026 rd = ⇒ 26 Ω 1 ----------------------------------------------------------------------------------------------------------------------------rd =

TYU1.14 rd =

VT ID

⇒ 50 =

0.026 0.026 ⇒ ID= 50 ID

or I D = 0.52 mA ______________________________________________________________________________________

TYU1.15 For the pn junction diode, 4 − 0.7 ID = = 0.825 mA 4 4 − 0.3 = 0.925 mA 4 ______________________________________________________________________________________

For the Schottky diode, I D =

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

TYU1.16 Vz = Vzo + I z rz ⇒ Vzo = Vz − I z rz so Vzo = 5.20 − (10−3 )( 20) = 5.18 V

Then Vz = 5.18+ (10× 10−3 ) ( 20) ⇒ Vz = 5.38 V ______________________________________________________________________________________ TYU1.17 P 6.5 = = 1.81 mA V Z 3.6 V PS = I Z R + V Z = (1.81)( 4) + 3.6 = 10.8 V ______________________________________________________________________________________ P = I ZVZ ⇒ I Z =

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Chapter 2 Exercise Solutions EX2.1

V S −V B −Vγ

12 − 4.5− 0.6 = 27.6 mA = 0.25 R υ R ( max) = VS + V B = 12 + 4.5 = 16.5 V Conduction cycle: υ I = 12 sin ω t1 = 4.5 + 0.6 = 5.1 V or ⎛ 5.1⎞ ω t1 = sin− 1⎜ ⎟ = 25.15 ° ⎝ 12 ⎠ ωt 2 = 180 − 25.15 = 154.85° 154. 85 − 25.15 Percent time = × 100% = 36.0% 360 ______________________________________________________________________________________ iD (peak ) =

EX2.2 (a)

v O = 12sin θ1 − 1.4 = 0

1.4 = 0.1166 12 which yields θ1 = 6.7° By symmetry, θ 2 = 180 − 6.7 = 173.3° Then 173.3 − 6.7 % time = × 100% = 46.3% 360 1.4 = 0 .35 sin θ1 = 4 (b) which yields θ1 = 20 .5 ° By symmetry, θ 2 = 180 − 20.5 = 159.5° 159.5 − 20.5 × 100% = 38.6% % time = 360 Then

or sin θ 1 =

______________________________________________________________________________________ EX2.3 (a) C =

12 VM ⇒ 125 μ F = 2 fRV r 2( 60) 2× 103 (0.4)

(

)

VM 12 ⇒ 250 μ F = fRVr (60 ) 2 ×10 3 (0.4 ) ______________________________________________________________________________________

(b) C =

(

)

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ EX2.4 Vr =

VM f RC

⇒ R=

VM

R=

f CVr

75

( 60) (50 ×10 −6 ) (4 )

or R = 6.25 k Ω Then ______________________________________________________________________________________ EX2.5 10 ≤ V PS ≤ 14 V , V Z = 5.6 V , 20 ≤ RL ≤ 100 Ω 5.6 = 0.28 A , 20 5.6 I L ( min ) = = 0.056 A 100 ⎡VPS (max ) − VZ ⎤⎦ ⋅ I L (max ) ⎡⎣V PS (min ) − V Z ⎤⎦ ⋅ I L (min ) − I Z (max) = ⎣ V PS (min )− 0.9V Z − 0.1V PS ( max ) V PS ( min ) − 0.9V Z − 0.1V PS ( max )

I L ( max) =

I L ( max) = or

or

(14 − 5.6 )(280 ) − (10 −5.6 )(56 ) 10 − (0.9 )(5.6 ) − (0.1 )(14 )

I L ( max ) = 591.5 mA

Power(min) = I Z ( max) ⋅VZ = ( 0.5915)( 5.6) So Power(min) = 3.31 W VPS ( max ) − VZ 14 − 5.6 Ri = = IZ (max ) + IL (min ) 0.5915 +0.056 or Ri ≅ 13 Ω Now ______________________________________________________________________________________ EX2.6 13.6 − 9 = 0.2383 A 15.3 + 4 = 9 + ( 4)( 0.2383) = 9.9532 V

For v PS = 13.6 V , I Z = vL,max

11 − 9 = 0.1036 A 15.3 + 4 = 9 + (4 )(0.1036 ) = 9.4144 V

For v PS = 11 V , I Z = v L ,min

Δ vL 9.9532 − 9.4144 × 100% = × 100% 13.6 − 11 Δv PS or Source Reg = 20.7% 13.6 − 9 For I L = 0, I Z = = 0.2383 A 15.3 + 4 v L, noload = 9 + ( 4 )( 0.2383) = 9.9532 V Source Reg =

For I L = 100 mA, which yields

IZ =

13.6 − ⎣⎡ 9 + I Z ( 4)⎦⎤ 15.3

− 0.10

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________ I Z = 0.1591 A vL, full load = 9 + (4 )(0.1591 A ) = 9.6363 V vL ,noload − vL , full load × 100% Load Reg = vL , full load 9.9532 − 9.6363 × 100% 9.6363 or Load Reg = 3.29% ______________________________________________________________________________________ =

EX2.7

5 , on ⇒ VO = −5 V For vI < V D2 Then, V2 = 4.3 V. D1 turns on when v1 = 2.5 V, Then, V1 = 1.8 V. Δv R2 1 1 vI > 2.5 V, O = ⇒ = 3 3 v R R Δ I 1+ 2 For

So that R1 = 2R2 ______________________________________________________________________________________ EX2.8 For υO = +2 V, D is on. Δυ I = 10 V, so Δ υ O = 10 V. Output = Square wave between +2 and − 8 V. ______________________________________________________________________________________ EX2.9 10 − 4.4 = 0.5895 mA 9.5 v I = 4.4 − 0.6 − ( 0.5895) ( 0.5) = 3.505V

v O = 4.4 V , I =

Set I = ID1, then Summary: For 0 ≤ vI ≤ 3 .5 V , vO = 4.4 V

V 3.5 V, D2 For vI > turns on and when v I ≥ 9.4 V , vO = 10

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

______________________________________________________________________________________ EX2.10 (a) If D1 is on, υO = υI − Vγ − VB = 5 − 0.7 − 1 = 3.3 V. 3.3 − 0.7 = 0.65 mA Then I D 2 = 4 5 −3.3 = 1.0 mA, but I D 2 < I R1 is impossible. Now I R1 = 1.7 D 1 is cutoff and I D 1 = 0 5 − 0.7 = 0.754 mA Then I R 1 = I D 2 = 1.7 + 4 υO = 0.7 + (0.754 )(4 ) = 3.72 V (b) υI = 10 V, Both D1 and D2 are on. υ O = 10 − 0.7 − 1 ⇒ υ O = 8.3 V 8.3 − 0.7 I D2 = = 1.9 mA 4 1.7 I R1 = = 1.0 mA 1.7 I D1 = 1.9 −1.0 = 0.9 mA ______________________________________________________________________________________ EX2.11 D 2 cutoff, I D 2 = 0

− 0.7 − (− 5 ) = 2.15 mA 2 5 − 0.7 − ( − 10) 14.3 I D1 = = 1.19 mA = 8+ 4 R1 + R 2 V A = 5 − (1.19)( 8) = −4.53 V V A < VB so that D 2 is cutoff. ______________________________________________________________________________________ VB = −0.7 V, I D3 =

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

EX2.12

(a)

I ph = η eΦ

⎡ 6.4 × 10− 2 ⎤ − ⎥ (0.5 ) I = ( 0.8) (1.6 ×10 19 ) ⎢ ⎢ ( 2 ) (1.6 ×10− 19 ) ⎥ ⎣ ⎦ so I = 12 .8 mA or ph v = (12.8)(1) = 12.8 V . (b) We have O 12.8 V The diode must be reverse biased so that VPS > ______________________________________________________________________________________

EX2.13 The equivalent circuit is

I =

So

5 −1.7 −0.2 =15 mA rf + R

15 − 1.7 − 0.2 3.1 = = 0.207 k Ω 15 15 Or Then R = 207 − 15 ⇒ R = 192 Ω ______________________________________________________________________________________ rf + R =

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

Test Your Understanding Solutions TYU2.1 (a) iD ( peak) for V B = 4 V. 15 − 0.7 − 4 i D ( peak) = 18 = ⇒ R = 572 Ω R 15 − 0.7 − 8 (b) iD = = 11.0 mA 0.572 Then 11.0 ≤ iD ( peak ) ≤ 18 mA For VB = 4 V,

⎛ 4.7 ⎞ 15 sin ωt1 = 4.7 ⇒ ωt1 = sin −1 ⎜ ⎟ = 18.26° ⎝ 15 ⎠ ω t2 = 180 − 18.26 = 161.74° 161.74 − 18.26 duty cycle = × 100 % = 39.9% 360 For VB = 8 V, ⎛ 8.7 ⎞ 15 sin ωt 1 = 8.7 ⇒ ωt1 = sin− 1 ⎜ ⎟ = 35.45 ° ⎝ 15 ⎠ ωt 2 = 180 − 35.45 = 144.55° 144.55 − 35.45 × 100 % = 30.3% duty cycle = 360 Then 30.3 ≤ duty cycle ≤ 39.9% ______________________________________________________________________________________

TYU2.2 vI = 120sin ( 2π 60t ) , Vγ = 0.7 V ,

and R = 2.5 kΩ Full-wave rectifier: Turns ratio 1:2 so that vS = vI VM = 120 − 0.7 = 119.3 V V r = 119.3 −100 = 19.3 V C =

119.3 VM = 2 f RV r 2 ( 60 ) (2.5x10 3 ) (19.3 )

or C = 20.6 μ F So _____________________________________________________________________________ TYU2.3 vI = 50 sin ( 2π 60t ) , Vγ = 0.7 V , C =

( 50 − 1.4)

and R = 10 k Ω. Full-wave rectifier

VM = 2 f RV r 2 ( 60 ) (10 ×103 )( 2)

or C = 20.3 μ F ______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4th edition Chapter 2 By D. A. Neamen Exercise Solutions ______________________________________________________________________________________

TYU2.4 Using Equation (2.16)


Similar Free PDFs