Steam Table PDF

Title Steam Table
Author Ahmad Saleem
Course Applied Thermodynamics
Institution University of Engineering and Technology Lahore
Pages 32
File Size 3.4 MB
File Type PDF
Total Downloads 2
Total Views 177

Summary

Steam Tables will be used to solve the problems in Thermodynamics -I
here is the pdf for the steam table with neat and clean format...


Description

Thermodynamic and Transport Properties of Fluids

SI Units arranged by G. F . C. Rogers and Y. R. Mayhew

Fifth Edition

Blackwell Publishing

CONTENTS Notation and Units Saturated Water and Steam Superheated and Supercritical Steam Further Properties of Water and Steam Mercury-Hg Ammonia (Refrigerant 7 17) (Refrigerant 12) Dichlorodifluoromethane Tetrafluoroethane (Refrigerant Dry Air at Low Pressure Specific Heat Capacity of Some Gases and Vapours Molar Properties of Some Gases and Vapours Enthalpies of Reaction and Equilibrium Constants A Selection of Chemical Thermodynamic Data Miscellaneous Liquids, Vapours and Gases International Standard Atmosphere SI - British Conversion Factors General Information Principal Sources

NOTATION AND UNITS velocity of sound -specific, molar heat capacity at constant p -specific, molar heat capacity at constant - specific, molar Gibbs function (h- molar Gibbs function of reaction, of formation - specific, molar enthalpy (u + + pi?) - molar enthalpy of reaction, of formation - equilibrium constant, of formation - thermal conductivity - molar mass -absolute pressure - Prandtl number - specific, molar (universal) gas constant -specific, molar entropy -absolute temperature(K) or Celsius temperature -temperature interval or difference - specific, molar internal energy -specific, molar volume -geometric altitude above sea level -ratio of specific heat capacities = -mean free path -dynamic viscosity -kinematic viscosity - mass, molar density -

bar K, K,

K or K m3/kg, m3/kmol m

K K

Subscripts c f g fg I

-refers to a property in the critical state -refers to a property of the saturated liquid, or to a value of formation -refers to a property of the saturated vapour -refers to a change of phase at constant p -refers to a property of the saturated solid -refers to a saturation temperature or pressure

Superscripts refers to a molar property per unit amount-of-substance) - refers to a property at standard pressure = 1 bar (the superscript o is often used) -

Saturated Water and Steam T

[bar]

and s are chosen to be zero for saturated liquid at the triple point. Note: values of

can be found on p. 10.

K]

Saturated Water and Steam

Saturated Water and Steam

Saturated Water and Steam

Superheated

The entries in all tables are regarded as pure numbers and therefore the symbols for the physical quantities = 4. Because of lack of space, should be divided by the appropriate units as shown for the entries at this has not been done consistently in the superheat and supercritical tables on pp. 6 -9 and in the tables on pp. and 23.

Superheated Steam*

* See footnote on p. 6.

Superheated Steam*

80 (295.0)

v,

h, s,

90 (303.3) (3 .O)

v,

h, v, h, s, v,

(318.0)

h,

120 (324.6)

v,

130 (330.8)

h, h, s,

140 (336.6)

v,

150 (342.1)

v,

h,

160 (347.3)

h,

170 (352.3)

v, h,

180 (357.0)

h,

190 (361.4)

v,

h,

200 (365.7)

h,

210 (369.8)

v, h,

220 (373.7)

v,

221.2 (374.15)

v,

h,

0.02352 2758 5.744 0.02048 2743 5.679 0.01802 2725 5.615 0.01 598 2705 5.553 0.01426 2685 5.493 0.01278 2662 5.433 0.01149 2638 5.373 0.01035 2611 5.312 0.00932 2582 5.248 0.00838 2548 5.181 0.00751 2510 5.108 0.00668 2466 5.027 0.00585 241 1 4.928 0.00498 2336 4.803 0.00368 2178 4.552 0.00317 2084 4.406

*See footnote on p. 6. Note: linear interpolation is not accurate near the critical point.

Supercritical Steam* [bar]

* See footnote on p. 6.

General Information for Triple point:Thermodynamic temperature (by definition)= 0.01 (hence 273.15 K, 459.67 R, 32 491.67 R) R Gas constant: = = = 0.4615

Compressed Water*

* See footnote on p. 6.

Saturated Ice and Steam

Isentropic Expansion of Steam-Approximate Relations Wet equilibrium expansion: pun = constant, with

1.035

for steam with an initial dryness fraction0.7

I

Superheated and supersaturated expansion: = constant, with n = constant and

Enthalpy drop volume of supersaturated steam:

1.3 I]

1.0

Mercury - Hg [bar]

and are zero at " C. Molar mass m = 200.59 further properties of the liquid are given on p. 23.

for superheated vapour

=

0.1036

K;

Ammonia - NH, (Refrigerant 717) Superheat (TSaturation Values

50 K T

-

I,

-

[bar] - 50

-45 -40 -35 - 30 -28 -26 -24 -22 - 20 - 14 - I2 -

- 8 - 6 - 4 - 2 0 2 4 6 8 14 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0.4089 0.5454 0.7177 0.9322 1.196 1.317 1.447 1.588 1.740 1.902 2.077 2.265 2.465 2.680 2.908 3.153 3.413 3.691 3.983 4.295 4.625 4.975 5.346 5.736 6.149 6.585 7.045 7.529 8.035 8.570 9.134 9.722 10.34 10.99 11.67 12.37 13.1 13.89 14.70 15.54 16.42 17.34 18.30 19.29 20.33

2.625 2.005 1.552 1.216 0.9633 0.8809 0.7389 0.6783 0.6237 0.5743 0.5296 0.4890 0.4521 0.4185 0.3879 0.3599 0.3344 0.3110 0.2895 0.2699 0.251 7 0.2351 0.2198 0.2056 0.1926 0.1693 0.1 590 0.1494 0.1405 0.1322 0.1245 0.1 173 0.1106 0.1044 0.0986 0.0931 0.0880 0.0788 0.0746 0.0706 0.0670 0.0635

,

= 132.4 Critical point Molar mass = 17.030

-44.4 -22.3 0 22.3 44.7 53.6 62.6 71.7 80.8 89.8 98.8 107.9 117.0 126.2 135.4 144.5 153.6 162.8 172.0 181.2 190.4 199.7 209.1 218.5 227.8 237.2 246.6 256.0 265.5 275.1 284.6 294.1 303.7 313.4 323.1 332.8 342.5 352.3 362.1 371.9 381.8 391.8 401.8 41 1.9 421.9

1373.3 1381.6 1390.0 1397.9 1405.6 1408.5 1411.4 1414.3 1417.3 1420.0 1423.7 1425.3 1427.9 1430.5 1433.0 1435.3 1437.6 1439.9 1442.2 1444.4 1446.5 1448.5 1450.6 1452.5 1454.3 1456.1 1457.8 1459.5 1461.1 1462.6 1463.9 1465.2 1466.5 1467.8 1468.9 1469.9 1470.8 1471.8 1472.6 1473.3 1473.8 1474.2 1474.5 1474.7 1474.7

-0.194 -0.096 0 0.095 0.188 0.224 0.261 0.297 0.333 0.368 0.404 0.440 0.475 0.510 0.544 0.579 0.613 0.647 0.681 0.715 0.749 0.782 0.816 0.849 0.881 0.914 0.947 0.979 1.012 1.044 1.076 1.140 1.1 72 1.204 1.235 1.267 1.298 1.329 1.360

,

1.422 1.453 1.484 1.515

6.159 6.057 5.962 5.872 5.785 5.751 5.718 5.686 5.655 5.623 5.593 5.563 5.533 5.504 5.475 5.447 5.419 5.392 5.365 5.340 5.314 5.288 5.263 5.238 5.213 5.189 5.165 5.141 5.1 18 5.095 5.072 5.049 5.027 5.005 4.984 4.962 4.940 4.919 4.898 4.877 4.856 4.835 4.814 4.793 4.773

1479.8 1489.3 1498.6 1507.9 1517.0 1520.7 1524.3 1527.9 1531.4 1534.8 1538.2 1541.7 1545.1 1548.5 1551.7 1554.9 1558.2 1561.4 1564.6 1567.8 1570.9 1574.0 1577.0 1580.1 1583.1 1586.0 1588.9 1591.7 1594.4 1597.2 1600.0 1602.7 1605.3 1608.0 1610.5 1613.0 161 5.4 1617.8 1620.1 1622.4 1624.6 1626.8 1629.0 1631.1 1633.1

6.592 6.486 6.387 6.293 6.203 6.169 6.135 6.103 6.071 6.039 6.008 5.978 5.948 5.919 5.891 5.863 5.836 5.808 5.782 5.756 5.731 5.706 5.682 5.658 5.634 5.61 5.588 5.565 5.543 5.521 5.499 5.418 5.458 5.437 5.417 5.397 5.378 5.358 5.340 5.321 5.302 5.284 5.266 5.248 5.230

= 113.0 bar.

further properties of the liquid are given on p. 23.

K

Dichlorodifluoromethane-

(Refrigerant 12)

Superheat T-- T,)

Saturation Values

Molar mass

=

120.91

15

further properties of the liquid are given on p. 23.

30 K

Dry Air at Low Pressure at

atm

The values for air can also be used with reasonable accuracy forCO, and 0,. The values of the thermodynamic properties and on pp. 16 and 17 are those at zero pressure. The values for the gases are quite accurate over a wide range of pressure, but those for the vapours increase appreciably with pressure. The transport properties and k for air are accurate over a wide range of pressure, except at such low pressures that the mean free path of the molecules is comparable to the distance between the solid surfaces containing the At high temperatures for air) dissociation becomes appreciable and pressure is a significant the values on pp. and apply only to undissociated states. variable for both gases and

Specific Heat Capacity

The specific heat capacities of atomic N and where is the molar mass of the species.

are

K of Some Gases and Vapours

with adequate accuracy by

= 2.5

Molar Properties of Some Gases and Vapours

+

By definition: = and = are virtually independent of pressure and in the following willbe treated as such: hence ii = Sand are tabulated for states at the standard pressure pe = 1 bar and are denoted by 3" and at a given temperature T can be found from other pressure p,

-

At any

=

For individual gases and vapours, changes in Sand between states (p,,

and

are given by

= =

=

For a constituent in a mixture, and must be regarded as the partial pressures in the respective states. When performing calculations involving non-reacting mixtures, the datum states at which and 3 are arbitrarily put equal to zero are unimportant: in the tables they are(1 bar, 298.1 5 K ) for and (1 bar, 0.0K ) for S. The datum states are important when chemical reactions are involved- see p. 20.

Carbon Dioxide (CO,)

44.010---kmol

Water Vapour

Molar Propertiesof Some Gases and Vapours K] Hydrogen

2.016 -kmol

kmol

Carbon Monoxide

Nitrogen

28.0105kmol

=

3kmol

Molar Properties of Some Gases and Vapours

Hydroxyl ( O H )

=

17.0075-kmol

Nitric Oxide

A

30.006

kmol

I = 16.043

Methane Vapour (CH,)

- 10025 - 6 699 - 3368 0 67 3 862 13 129 24 673 38 179 53 27 69 609 86910 104 960 123600

- 10025 - 7 530 - 5031

0 149.39 172.47 186.15 186.37 197.25 215.88 232.4 1 247.45 261.18 273.76 285.31 295.93 305.75

2479 - 2427 536 8 022 29 865 43 293 57 969 73 607 89 994 106970 -

Ethylene Vapour

kmol

- 10025 - 21638 - 37863 - 55499

- 75038 - 116400

- 209 270 -313660 - 369 590 -427 720 -487 900

0 100 200 298.15 400 600 800 1000 1200 1400 1600 1800 2000

I

10519 7192 3 803 0 79 17334 32849 50 664 70 254 91 199 113 180 135970 59 390

10519 8024 5466 2479 - 2415 557 2 346 26 197 42 350 60 276 79 558 99 878 121 010 142 760

kmol 0 180.44 303.85 219.22 219.49 233.24 258.24 280.47 300.30 318.13 334.27 348.94 362.36 374.69

10519 25236 44573 65362 65 767 - 88412 - 137610 - 191 520 - 249 640 -31 510 376 780 -445 120 - 516270 - 589 990

The molar enthalpies of reaction, on p. 21 are for a reference temperature of T = 298.15 K and are virtually independent of pressure. Corresponding values of Gibbs function of reaction, may be found from values of equilibrium constant using the relation

. (Suffixes P and R

refer to products and reactants) is defined by

=

The standard or thermodynamic =

or

= I

where are the stoichiometric coefficients, those for the products and reactants being taken as positive and negative respectively. The constant so defined is dimensionless.

,

Enthalpies of Reaction and Equilibrium Constants Reaction values of relate to the corresponding chemical equation with amounts of substance in kilomoles

at T = 298.15 K (25

+

+ 20, + + + +

, +

+

CO+

+ + +

- 393 520 - 282 990 - 241 830 -802 310 - 1 323 170 - 1 427 860 - 3 169540 - 5 116 180 +41 160 - 281 540 + 90 290 - 435 980 - 498 340 - 945 300

+

+O H

+

NO

2H 20 2N At 298.15 K for for for

=

bar

I 1.01325

= ----atm

= 43 990 = 33 800 = 41 500

=

of of of

0.99344

,,

log,,

=

0.43429 In

A Selection of Chemical Thermodynamic Data

= 1 bar and

at

= 298.15 K

K]

K] C (graphite) C (diamond)

12.01 1 12.011 16.043 28.054 28.0105 44.0 10 1.008 2.016 17.005 18.0155 14.0065 30.006 15.9995 31.999

0 1 900 714 990 -74 870 52 470 -110530 -393 520 217 990 0 39 710 -285 820 -241830 472 650 0 90 290 249 170 0

Reproduced from Rogers, G. F. C., and Transfer (Longman, 1992).

0 870 669 570 - 50810 68 350 -137 -394 390 203 290 0 35010 -237 150 -228 590 0 86 600 231 750 0

0 -1.157 -270.098 20.498 -27.573 55.331 159.093 -82.003 0 -14.122 95.660 92.207 . -183.740 0 -34.933 - 93.481

Y. R., Engineering

8.53 6.06 20.84 35.64 42.89 29.14 37.13 20.79 28.84 29.99 75.32 33.58 20.79 29.21 29.84 21.91 29.37

5.69 2.44 158. 186.26 219.33 197.65 2 13.80 114.71 130.68 183.61 70.00 188.83 153.30 191.61 210.76 161.06 205.14 Work and Heat

Miscellaneous Liquids, Vapours and Gases*

Ammonia (NH sat. liquid = 195.4 K a = 17.030

R-12 sat. liquid =1 K 120.91

0.902 1468 ~ / l o - ~336 86.8 P

0.980 1304 21 3 68.6

--

sat. liquid = 169.85 K = 102.03 Mercury (Hg) liquid = 234.3 K = 200.59 Potassium (K) liquid 336.8 K = 39.098

0.710 860 solid

Sodium (Na) liquid 370.5 K = 22.990

1.224 967 solid 0.135

Sodium-Potassium eutectic liquid 262 K

P

solid

k

0.977 869 780 0.0222

0.929 845 467 0.0236

Argon (Ar) atm = 39.948 Carbon dioxide atm = 44.010 Helium (He) atm = 4.003 Hydrogen atm = 2.016

P

5.193 0.1951 18.40 134.0 14.05 0.0983 7.92 156.1

Steam low pressures = 18.01 5

* See footnote on p. 6. The properties

and (and for liquids) d o not vary much with pressure; see also footnote on p. 16.

International Standard Atmosphere

Density at sea level

=

1.2250

SI - British Conversion Factors The International System of Units (HMSO, 1986) maybe consulted for the definitions of SI units, and British Standard 350 for comprehensive tables of conversion factors. Exact values are printed in bold type. Mass: 1 kg =

1 lb = 2.205 0.453 592 37

Length: 1 m =

1 ft = 3.281 ft 0.3048

Volume: 1 m 3 =

dm 3

Temperature unit: 1

=

= 35.31 ft3 =

220.0 UK gal

= 264.2 US gal

1.8 R (see p. 11 for definitions of units and scales)

Force: 1 N (or kg m/s2 ) =

dyn =

1 9.806 65

= 7.233 pdl =

7.233 or 0.2248 lbf 32.174

N/m 2 (or Pa) = 14.50 lbf/in2 = 750

Pressure: p: 1 bar =

=

10.20

Specific volume v : m3 /kg = 16.02 ft3 /lb Density p : 1 kg/m3 = 0.062 43 lb/ft3 Energy: 1

=

Power: 1

=

1

=

737.6 ft

N

=

=

1 kcal,, 4.1868

= 0.9478 Btu =

=

9.806 65 =

=

1

2.326

metric hp

Thermal conductivity k: 1

R

= --= 577.8

Heat transfer coefficient: 1 kW/m2

= 0.4299

1 4.1868

Specific heat capacity etc. (c,R, s): 1

1

9.806 65 x 75

1 737.6 or --- British hp = 3412 550 0.7457

Specific energy etc. (u, h): 1

Dynamic viscosity

737.6 ft lbf

= 0.2388

hR

= 176.1 Btu/ft2 h

R

s = 1 N s/m2 = 1 Pa s = 10 dyn s/cm2 (or poise) = 2419 h = 18.67 x pdl h/ft2

Kinematic viscosity v : 1 m2 /s =

cm 2/s (or stokes) = 38 750 ft2/h

R

General Information = 9.806 65 m/s 2 =

Standard acceleration:

32.1740 ft/s2

Standard atmospheric pressure: 1 atm = 1.013 25bar

Molar (universal) = 1.986 Molar volume:

= =

constant: = 8.3145 R = 1545 ft

Kt

R

22.41 m3 /kmol at 1 atm and 359.0 at atm and 32°F

Composition

vol. analysis 0.7809 0.2095 0.0093 0.0003

- 28.01 3 Nitrogen - 31.999 Oxygen Argon (Ar- 39.948 - 44.010 Carbon dioxide

Molar mass = 28.96 Specific gas constant R = 0.2871

See

grav. analysis 0.7553 0.2314 0.0 28 0.0005

16 for other properties

For approximate calculations with air: vol. analysis 0.79 0.2 3.76

- 28 - 32

Molar mass = 29 Specific gas constant R = 0.287 = 0.0685 R = 53.3 ft K = 0.240 = =

a = 56.7 x

=

grav. analysis 0.767 0.233 3.29

K R

R

1.40 constant: kW/m2 K 4 = 0.171 x

Btu/ft2 h R 4

is the amount of substance of a system which contains as many elementary entities as there are atoms in 12 kg of carbon 12. The elementary entities must be specified, but for problems involving mixtures gases and combustion they will be molecules or atoms.

PRINCIPAL SOURCES National Engineering Laboratory, Sream Tables 1964 (Her Majesty's Stationery Office 1964) (reproduced by courtesy of the Controller of Her Majesty's Stationery Office). ASHRAE Thermodynamic Properties of Refrigerantsand ASHRAE Thermophysical Properties of Refrigerants (ASHRAE, 1969 and 1976). Hilsenrath, J., Beckett, C. W., Benedict, W. S., Fano, L., Hoge, H. J., Masi, J. F., Nuttall, R. L., Touloukian, Y. S., and Woolley, H. W., Tables of Thermal Properties of Gases (US. N.B.S. Circular 564, 1955, available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.). Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe. I., Selected Values of Chemical Thermodynamic Properties (i bid. 500, 1952). Wagman, D. D., Selected Valued of Chemical Thermodynamic Properties(ibid., Tech. Note 270, 1965). Sheldon, L. A., Thermodynamic Properties of Mercury Vapour, Amer. Soc. Mech. Engrs. No. 49-A-30 (1949). Stull, D. R., and Prophet, H. (eds). Janaf Thermochemical Tables, The Dow Chemical Company, Midland, Michigan (U.S. G.P.O., 1971, Supplements 1974, 1975, 1978). Thermodynamic Properties of KLEA 134a (ICI private communication, 1994)

By the same authors Engineering Thermodynamics, Work and Heat Transfer (Longmans, 4th ed.). By H. Cohen, G . F. C. Rogers and H. I. H. Saravanamuttoo Gas Turbine Theory (Longmans, 4th ed.)

FOR USE WITH THESE TABLES Enthalpy- Entropy Diagram for Steam Prepared by D. C. Hickson and F. R. Taylor

NOTES

© 1995 by Blac...


Similar Free PDFs