Transcendental Functions PDF

Title Transcendental Functions
Author Enrico Borja
Course Calculus 2
Institution University of the East (Philippines)
Pages 11
File Size 235.4 KB
File Type PDF
Total Downloads 98
Total Views 146

Summary

Thus consists integration formula and different properties...


Description

DERIVATIVES OF TRANSCENDENTAL FUNCTIONS TRANSCENDENTAL FUNCTION A function which is not algebraic is called a transcendental function. Functions such as trigonometric, inverse trigonometric, logarithmic, and exponential are classified as transcendental. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 𝐿𝑒𝑡 𝑢 𝑏𝑒 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥. 𝑇ℎ𝑒𝑛, 𝑑𝑢

𝐷10 :

𝑑 (sin 𝑢) 𝑑𝑥

= cos 𝑢 ∙

𝐷11 :

𝑑 (cos 𝑢) 𝑑𝑥

= − 𝑠𝑖𝑛 𝑢 ∙

𝐷12 :

𝑑 (tan 𝑢) 𝑑𝑥

= 𝑠𝑒𝑐 2 𝑢 ∙

𝐷13 :

𝑑𝑥

𝐷14 :

𝑑𝑥

𝐷15 :

𝑑𝑥

𝑑𝑥

𝑑𝑢

𝑑𝑥

𝑑𝑢

𝑑𝑥

𝑑

(cot 𝑢) = − 𝑐𝑠𝑐 2 𝑢 ∙

𝑑

(sec 𝑢) = sec 𝑢 ∙ tan 𝑢 ∙

𝑑

(csc 𝑢) = − csc 𝑢 ∙ cot 𝑢 ∙

𝑑𝑢 𝑑𝑥 𝑑𝑢 𝑑𝑥 𝑑𝑢 𝑑𝑥

ILLUSTRATION: Find the derivative of y with respect to x then simplify the result whenever possible. 1.

𝑦 = cos(𝑥2 + 1) 𝑑𝑢

Let 𝑢 = 𝑥2 + 1 ;

𝑑𝑥

= 2𝑥

∴ 𝑦 = cos 𝑢 By 𝐷11 :

2.

𝑑𝑦

𝑑𝑥

= − sin 𝑢 ∙

𝒅𝒚 𝒅𝒙

= − sin(𝑥2 + 1) ∙ 2𝑥 = −𝟐𝒙 𝐬𝐢𝐧(𝒙𝟐 + 𝟏)

𝑦 = 2 tan

𝑥

2

𝑑𝑢 𝑑𝑥

−𝑥

Let 𝑢 = ∴ 𝑦 = 2 tan 𝑢 − 𝑥

𝑥

2

;

𝑑𝑢

𝑑𝑥

=

1 2

𝑑𝑦 𝑑𝑥

By 𝐷12 :

𝑑𝑢

= 2 𝑠𝑒𝑐 2 𝑢 ∙

𝑑𝑥

−1

1

𝑥

= 2 ∙ 𝑠𝑒𝑐 2 2 ∙ − 1 = 𝑠𝑒𝑐 2

𝑥

2

−1

2

𝟏 + 𝒕𝒂𝒏𝟐 𝜽 = 𝒔𝒆𝒄𝟐 𝜽)

(by the Pythagorean Identity ∴

3.

𝒅𝒚 𝒅𝒙

= 𝒕𝒂𝒏𝟐

𝒙

𝟐

𝑦 = 𝑢2 − 2𝑢 + 4 { 𝑢 = 1 + sec 𝑥 𝑦 = 𝑢2 − 2𝑢 + 4 ;

𝑑𝑦

= 2𝑢 − 2 = 2(𝑢 − 1)

𝑢 = 1 + sec 𝑥

𝑑𝑢

= sec 𝑥 ∙ tan 𝑥

;

𝑑𝑢

𝑑𝑥

By 𝐷7 : 𝑑𝑦

𝑑𝑥

=

𝑑𝑦

𝑑𝑢

𝑑𝑢

∙ 𝑑𝑥

= [2(𝑢 − 1)] ∙ (sec 𝑥 ∙ tan 𝑥) = [2((1 + sec 𝑥) − 1)] ∙ sec 𝑥 ∙ tan 𝑥 ∴

𝒅𝒚 𝒅𝒙

= 𝟐 𝒔𝒆𝒄𝟐 𝒙 𝒕𝒂𝒏 𝒙

4. 𝑦 = 2 cos 𝑥 ∙ sin 2𝑥 − sin 𝑥 ∙ cos 2𝑥 By product rule: 𝑑𝑦

𝑑𝑥 𝒅𝒚

𝒅𝒙

= 2[cos 𝑥 (2 cos 2𝑥) + sin 2𝑥 (− sin 𝑥)] − [sin 𝑥 (−2 sin 2𝑥) + cos 2𝑥 (cos 𝑥)] = 𝟑 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 𝟐𝒙

5. 𝑥 = 𝑠𝑒𝑐 2 𝑦 By implicit differentiation: 1 = 2 sec 𝑦 [sec 𝑦 tan 𝑦 𝑑𝑦

=

1 2 𝑠𝑒𝑐 2 𝑦 tan 𝑦

𝒅𝒚

=

𝟏

𝑑𝑥

𝒅𝒙

𝟐

𝑑𝑦

𝑑𝑥

]

𝒄𝒐𝒔𝟐𝒚 𝐜𝐨𝐭 𝒚

2 6. {𝑦 = 𝑢 − 2𝑢 + 4 𝑢 = 1 + sec 𝑥 𝑑𝑦

= 2𝑢 − 2 = 2(𝑢 − 1)

𝑑𝑢

= sec 𝑥 ∙ tan 𝑥

𝑦 = 𝑢 2 − 2𝑢 + 4 ;

𝑑𝑢

𝑢 = 1 + sec 𝑥

𝑑𝑥

;

By 𝐷7 : 𝑑𝑦

𝑑𝑥

=

𝑑𝑦

𝑑𝑢



𝑑𝑢

𝑑𝑥

= [2(𝑢 − 1)] ∙ (sec 𝑥 ∙ tan 𝑥) = [2((1 + sec 𝑥) − 1)] ∙ sec 𝑥 ∙ tan 𝑥 ∴

𝒅𝒚

𝒅𝒙

= 𝟐 𝒔𝒆𝒄𝟐 𝒙 𝒕𝒂𝒏 𝒙

Properties of Inverse Trigonometric Functions If y is a function of x determined by the relation tan y = x , then y is called the inverse tangent function of x and is denoted by 𝒚 = 𝐚𝐫𝐜𝐭𝐚𝐧 𝒙

𝒐𝒓

𝒚 = 𝐭𝐚𝐧−𝟏 𝒙

where the symbols are read as “ the angle whose tangent is x” .

DERIVATIVES: 𝐿𝑒𝑡 𝑢 𝑏𝑒 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥. Then, 𝑑

(sin−1 𝑢) =

√1 − 𝑢 2

𝑑

(cos −1 𝑢) =

√1 − 𝑢 2

𝑑

(tan −1 𝑢) =

1+ 𝑢2

𝐷16 :

𝑑𝑥

𝐷17 :

𝑑𝑥

𝐷18 :

𝑑𝑥 𝑑

𝐷19 :

(cot −1 𝑢) = 𝑑𝑥

𝐷20 :

𝑑𝑥

𝐷21 :

𝑑𝑥

1



𝑑𝑢 𝑑𝑥

−1



𝑑𝑢 𝑑𝑥

1



𝑑𝑢 𝑑𝑥

−1



𝑑𝑢 𝑑𝑥

1+ 𝑢 2 1



𝑑𝑢 𝑑𝑥

−1



𝑑𝑢 𝑑𝑥

𝑑

(s𝑒𝑐 −1 𝑢) =

𝑢√ 𝑢 2 −1

𝑑

(csc −1 𝑢) =

𝑢√ 𝑢 2 −1

ILLUSTRATION: 𝑑𝑦

If 𝑦 = cot −1 √𝑥 2 − 2𝑥 , find 𝑑𝑥 in simplest form. Solution: 1

𝑦 = cot −1 √𝑥 2 − 2𝑥 𝐿𝑒𝑡 𝑢 = √𝑥 2 − 2𝑥 = (𝑥 2 − 2𝑥) ⁄ 2 𝑑𝑢

=

𝑑𝑢

=

𝑑𝑥 𝑑𝑥

∴ 𝑦 = cot −1 𝑢

1 (𝑥 2 2 𝑥 −1

− 2𝑥)

√𝑥 2 −2𝑥

−1⁄ 2

[2𝑥 − 2]

By 𝐷19 : 𝑑𝑦

𝑑𝑥

𝑑

𝑑𝑥

−1

=



2 1+ (√𝑥 2 −2𝑥)

1+ 𝑢 2



𝑑𝑢 𝑑𝑥

𝑥 −1 √𝑥 2 −2𝑥

−(𝑥 −1)

=

(𝑥 2 −2𝑥+1)√𝑥 2 −2𝑥

=

− ( 𝑥 −1) (𝑥 −1)2√𝑥 2 −2𝑥

=

−1 (𝑥 −1)√𝑥 2−2𝑥

𝒅𝒚

−1

(cot −1 𝑢) =

= 𝒅𝒙



√𝑥 2 −2𝑥

√𝑥 2 −2𝑥

−√𝒙𝟐 −𝟐𝒙 (𝒙 −𝟏)(𝒙𝟐 −𝟐𝒙)

ILLUSTRATION: 𝑑𝑦

If 𝑦 = (sin−1 4𝑥 )2 , find 𝑑𝑥 in simplest form. Solution: 𝑦 = (sin−1 4𝑥 )2 𝐵𝑦 𝑃𝑜𝑤𝑒𝑟 𝑅𝑢𝑙𝑒: 𝐿𝑒𝑡 𝑢 = sin−1 4𝑥 𝑑𝑢

𝑑𝑥

∴ 𝑦 = 𝑢2 𝑑𝑦 𝑑𝑥

=2𝑢

𝑑𝑢 𝑑𝑥 4 √1 −16𝑥2

= 2 sin−1 4𝑥 ∙

𝒅𝒚

𝒅𝒙

=

8 sin−1 4𝑥 √1 −16𝑥 2

=

𝟖√𝟏 −𝟏𝟔𝒙𝟐 ∙𝐬𝐢𝐧−𝟏 𝟒𝒙



√1 −16𝑥 2 √1 −16𝑥 2

𝟏 −𝟏𝟔 𝒙𝟐

=

1

√1 − (4𝑥)2

∙ [4]

ILLUSTRATION: 𝑦 = tan−1 √𝑥 2 − 1 + csc −1 𝑥 Solution: 𝑑𝑦

= 𝑑𝑥

𝒅𝒚 𝒅𝒙

1

2

1+ (√𝑥 2 −1) 1

𝑥

=

𝑥 2 √𝑥 2 −1



=

𝑥 √𝑥 2 −1

1

+

1

∙ [ ∙ (𝑥 2 − 1) 2

−1⁄ 2

∙ (2𝑥)] +

−1

+

𝑥 √𝑥 2 −1 −1

𝑥 √𝑥 2 −1

=𝟎

EXPONENTIAL AND LOGARITHMIC FUNCTIONS PROPERTIES OF LOGARITHMS 1. log 𝑎 𝑀𝑁 = log 𝑎 𝑀 + 2. log 𝑎

𝑀

𝑁

= log 𝑎 𝑀 −

log 𝑎 𝑁 log 𝑎 𝑁

3. log 𝑎 𝑀𝑝 = 𝑝 ∙ log 𝑎 𝑀 4. log 𝑎 𝑛√𝑀 =

1 𝑛

∙ log 𝑎 𝑀

5. log 𝑎 𝑎 = 1 6. log 𝑎 1 = 0 7. 𝑎 log𝑎 𝑀 = 𝑀 𝒘𝒉𝒆𝒓𝒆 𝒂 > 𝟎 𝒆𝒙𝒄𝒆𝒑𝒕 𝟏 EXPONENTIAL LAWS 1. 𝑎 𝑚 ∙ 𝑎 𝑛 = 𝑎 𝑚+𝑛 2. 𝑎 𝑚 ÷ 𝑎 𝑛 =

𝑎𝑚 𝑎𝑛

3. (𝑎 𝑚 )𝑛 = 𝑎 𝑚𝑛

= 𝑎𝑚 − 𝑛 , 𝑎𝑛 ≠ 0

−1

𝑥 √𝑥 2 −1

∙ (1)

4. (𝑎𝑏)𝑚 = 𝑎 𝑚 ∙ 𝑏𝑚 𝑎 𝑚

5. ( ) 𝑏

𝑎𝑚

=

𝑏𝑚

, 𝑏 ≠0

6. 𝑎 0 = 1 1

7. 𝑎 −𝑛 =

𝑎𝑛

DERIVATIVES: 𝐿𝑒𝑡 𝑢 𝑏𝑒 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥. 𝑑

(log 𝑎 𝑢) = log 𝑎 𝑒 ∙

𝑑

(ln 𝑢 ) =

𝐷22 :

𝑑𝑥

𝐷23 :

𝑑𝑥 𝑑 𝑑𝑥

𝐷24 :

𝑑

𝐷25 :

𝑑𝑥

1

𝑢



𝑢



𝑑𝑢

𝑑𝑥

𝑑𝑢 𝑑𝑥

(𝑎 𝑢 ) = 𝑎 𝑢 ∙ ln 𝑎 ∙ (𝑒 𝑢 ) = 𝑒 𝑢 ∙

1

𝑑𝑢

𝑑𝑥

𝑑𝑢 𝑑𝑥

𝒘𝒉𝒆𝒓𝒆 𝒂 > 𝟎 𝒆𝒙𝒄𝒆𝒑𝒕 𝟏

ILLUSTRATION: 𝑑𝑦

If 𝑦 = log 2 √𝑥 2 − 2𝑥 , find 𝑑𝑥 in simplest form. Solution: By 𝐷22 :

𝑑

𝑑𝑥

(log 𝑎 𝑢) = log 𝑎 𝑒 ∙

1

𝑢



𝑑𝑢

𝑑𝑥

𝐿𝑒𝑡 𝑢 = √𝑥 2 − 2𝑥 = (𝑥 2 − 2𝑥 ) 𝑑𝑢

𝑑𝑥

1 (𝑥 2 2

=

𝑑𝑢

𝑑𝑥

=

𝑥 −1 √𝑥 2 −2𝑥

∴ 𝑦 = log 2 𝑢 𝑑𝑦

𝑑𝑥

= log 2 𝑒 ∙

1

𝑢

− 2𝑥)

𝑑𝑢

∙ 𝑑𝑥

−1⁄ 2

[2𝑥 − 2]

1⁄ 2

= log 2 𝑒 ∙ 𝒅𝒚

∴ 𝒅𝒙 = 𝐥𝐨𝐠 𝟐 𝒆 ∙

1

√𝑥 2 −2𝑥



𝑥 −1 √𝑥 2 −2𝑥

𝒙 −𝟏

𝒙𝟐 −𝟐𝒙

ALTERNATIVE SOLUTION: Using a property of logarithm, 𝑦 = log 2 √𝑥 2 − 2𝑥 is equivalent to 1

𝑦= 𝑑𝑦

𝑑𝑥

=

log 2 (𝑥 2 − 2𝑥)

2

1

1

log 2 𝑒 ∙ 𝑥 2 −2𝑥 ∙ (2𝑥 − 2)

2

𝒅𝒚

∴ 𝒅𝒙 = 𝐥𝐨𝐠 𝟐 𝒆 ∙

𝒙 −𝟏 𝒙𝟐 −𝟐𝒙

ILLUSTRATION: If 𝑦 = ln(𝑥 sec 𝑥) , find

𝑑𝑦

𝑑𝑥

in simplest form.

1

∙ 𝑑𝑥

Solution: 𝑑

By 𝐷23 :

(ln 𝑢 ) =

𝑑𝑥

𝑢

𝑑𝑢

𝐿𝑒𝑡 𝑢 = 𝑥 sec 𝑥 𝑑𝑢

𝑑𝑥

=𝑥∙

𝑑

𝑑𝑥

(sec 𝑥) + sec 𝑥 ∙

𝑑

𝑑𝑥

(𝑥 )

= 𝑥 ∙ (sec 𝑥 ∙ tan 𝑥 ) + sec 𝑥 (1) 𝑑𝑢

𝑑𝑥

= 𝑥 sec 𝑥 tan 𝑥 + 𝑠𝑒𝑐 𝑥 ∴ 𝑦 = ln 𝑢

𝑑𝑦

𝑑𝑥

= =

1



𝑢

1

𝑑𝑢 𝑑𝑥

𝑥 sec 𝑥 1

∙ [𝑥 sec 𝑥 tan 𝑥 + 𝑠𝑒𝑐 𝑥]

= 𝑥 sec 𝑥 ∙ [sec 𝑥 (𝑥 tan 𝑥 + 1]

𝒅𝒚



𝒙 𝐭𝐚𝐧 𝒙 + 𝟏

=

𝒅𝒙

𝒙

= 𝒕𝒂𝒏 𝒙 +

𝟏 𝒙

ALTERNATIVE SOLUTION: Using a property of logarithm, 𝑦 = ln(𝑥 sec 𝑥) is equivalent to 𝑦 = ln 𝑥 + ln sec 𝑥 𝑑

By 𝐷23 :

𝒅𝒚

∴ 𝒅𝒙 =

1

(ln 𝑢 ) =

𝑑𝑥

𝑑𝑢

∙ 𝑑𝑥

𝑢

𝑑𝑦 1 1 ∙ (sec 𝑥 ∙ tan 𝑥 ) ∙ (1) = ∙ (1) + 𝑑𝑥 𝑥 sec 𝑥

𝟏

+ 𝐭𝐚𝐧 𝒙

𝒙

ILLUSTRATION: If 𝑦 = 2√𝑥

2

−4

𝑑𝑦

, find 𝑑𝑥 in simplest form.

Solution: 𝑑

By 𝐷24 :

𝑑𝑥

𝑑𝑢

(𝑎 𝑢 ) = 𝑎 𝑢 ∙ ln 𝑎 ∙ 𝑑𝑥 1

𝐿𝑒𝑡 𝑢 = √𝑥 2 − 4 = (𝑥 2 − 4) ⁄2 𝑑𝑢

=

1 2

𝑑𝑢

=

𝑥 1 (𝑥 2 −4) ⁄2

𝑑𝑥

𝑑𝑥



∙ (𝑥 2 − 4)

𝑑𝑦

= 2𝑢 ∙ ln 2 ∙ = 2√𝑥 =

𝒅𝒙

∙ (2𝑥)

𝑦 = 2𝑢 𝑑𝑥

𝒅𝒚

−1⁄ 2

=

2

−4

𝑑𝑢

𝑑𝑥

∙ ln 2 ∙

√ 2 2 𝑥 −4 ∙𝑥 ln 2

√𝑥 2 −4



𝑥

1 (𝑥 2 −4) ⁄2

√𝑥 2 −4

√ 𝟐 𝟐 𝒙 −𝟒 ∙𝒙√𝒙𝟐 −𝟒 ∙𝒍𝒏 𝟐 𝒙𝟐 −𝟒

√𝑥 2 −4

ILLUSTRATION: 2

If 𝑦 = 𝑒 tan(3𝑥 ), find

𝑑𝑦 𝑑𝑥

in simplest form.

Solution: 𝑑

By 𝐷25 :

𝑑𝑥

(𝑒 𝑢 ) = 𝑒 𝑢 ∙

𝑑𝑢

𝑑𝑥

𝐿𝑒𝑡 𝑢 = tan(3𝑥 2 ) 𝑑𝑢

= 𝑠𝑒𝑐 2 (3𝑥 2 ) ∙ [6𝑥]

𝑑𝑢

= 6𝑥 ∙ 𝑠𝑒𝑐 2 (3𝑥 2 )

𝑑𝑥 𝑑𝑥



𝑦 = 𝑒𝑢 𝑑𝑦

𝑑𝑥

= 𝑒𝑢 ∙

𝑑𝑢

𝑑𝑥

= 𝑒 tan(3𝑥 ∴

𝒅𝒚 𝒅𝒙

2)

∙ [6𝑥 ∙ 𝑠𝑒𝑐 2 (3𝑥 2 )]

= 𝟔𝒙 ∙ 𝒔𝒆𝒄𝟐 (𝟑𝒙𝟐) ∙ 𝒆𝒕𝒂𝒏(𝟑𝒙

𝟐)

ILLUSTRATION: 𝑑𝑦

2

If 𝑦 = 𝑥 𝑥 , find 𝑑𝑥 in simplest form. Solution: Taking the natural logarithm of the given equation, 𝑦 = 𝑥𝑥

2 2

ln 𝑦 = ln(𝑥 𝑥 ) Then applying the property of logarithm: ln 𝑦 = 𝑥 2 ∙ ln 𝑥 Using Implicit Differentiation: 1

𝑦



𝑑𝑦 𝑑𝑥

= 𝑥2 ∙

1

𝑥

+ ln 𝑥 ∙ (2𝑥)



𝒅𝒚

𝒅𝒙

= 𝒚 ∙ (𝒙 + 𝟐𝒙 𝐥𝐧 𝒙)...


Similar Free PDFs