Chapter 8 - Hermitian and Unitary Matrices PDF

Title Chapter 8 - Hermitian and Unitary Matrices
Author Jonathan Merritt
Course Linear Algebra and Numerical Linear Algebra 2
Institution University of Chester
Pages 8
File Size 148.9 KB
File Type PDF
Total Downloads 56
Total Views 183

Summary

Linear Algebra...


Description

Chapter 8 Hermitian Matrices and Unitary Matrices 8.1

Hermitian Matrices

Definition 8.1 The Hermitian Transpose of a matrix (denoted by AH ), is the complex conjugate transpose of A, that is AH = (A)T . Definition 8.2 A matrix is normal if AAH = AH A. Theorem 8.3 Every normal matrix is similar to a diagonal matrix. Definition 8.4 A matrix is Hermitian if it equals to it’s own hermitian transpose. i.e. A is hermitian if A = AH . Theorem 8.5 A hermitian matrix is normal. Proof. Let A be a hermitian matrix. Then AAH = AA = AH A. 

Theorem 8.6 Prove that AH A and AAH are normal for any matrix A. Proof. Let A be any matrix. Then • (AH A)H = AH (AH )H = AH A and • (AAH )H = (AH )H AH = AAH . Therefore AAH and AH A are hermitian and consequently normal. 86



CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

87

Definition 8.7 Let W be an invertible n × n matrix over C. The inner product of x, y ∈ Cn with respect to W , denoted by hx, yiW is:     hx, yiW = (W x) · W y = (W x)T W y .

where · is the usual dot product and y is the complex conjugate of y .

Note if W = I (the Euclidean inner product), then hx, yi = (x) · ( y ).   1 1 0 Example 8.8 Let x = (−2i, 3− 2i, i) ∈ C3 , y = (2i, 2 + i, 7) ∈ C3 and W = 0 1 1. Calculate 1 0 1 hx, yiW . Solution.   hx, yiW = (W x)T W y    T     −2i 1 1 0 1 1 0 2i   =  0 1 1 3 − 2i    0 1 1 2 + i   1 0 1 i 1 0 1 7     T   −2i + 3 − 2i 2i + 2 + i   =  3 − 2i + i    2 + i + 7   −2i + i 2i + 7   T    3 − 4i 2 + 3i   =  3 − i     9 + i   −i 7 + 2i   2 − 3i   = 3 − 4i 3 − i −i  9 − i  7 − 2i = (3 − 4i)(2 − 3i) + (3 − i)(9 − i) + (−i)(7 − 2i) = 6 − 9i − 8i + 12i2 + 27 − 3i − 9i + i2 − 7i + 2i2 = 18 − 36i. ♣

Theorem 8.9 (Properties of Inner Products) Let x, y, z ∈ Cn and λ ∈ C. Then • hx, xiW is real and positive if x 6= 0. • hx, xiW = 0 iff x = 0. • hx, yiW = hy, xiW .

CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

88

• hλx, yiW = λhx, yiW and hx, λyiW = λhx, yiW . • hx + y, ziW = hx, ziW + hy, ziW and hx, y + ziW = hx, yiW + hx, ziW . Definition 8.10 Let W be an invertible n × n matrix and A be an m × n matrix. The adjoint matrix of A (denoted by A∗ ) is an n × m that satisfies: hx, AyiW = hA∗ x, y iW for all x ∈ Cn and y ∈ Cm . Theorem 8.11 The adjoint matrix always exists and is A∗ = (W H W )−1 AH (W H W ). Note for W = I(the Euclidean inner product), A∗ = AH

and

hx, Ayi = hA∗ x, y i = hAH x, yi.

Proof. Let W be an invertible n × n matrix, A is an n × m, A∗ be the adjoint of A and x ∈ Rn or Cn and y ∈ Rm or Cm . Then     • hx, AyiW = (W x) · W Ay = (W x)T W Ay = xT W T W A y.     • hA∗ x, yiW = (W A∗ x) · W y = (W A∗ x)T W y = xT (A∗ )T W T W y.

Now

hx, AyiW = hA∗ x, y iW xT W T W A y = xT (A∗ )T W T W y xT W T W A y − xT (A∗ )T W T W y = 0   xT W T W A − (A∗ )T W T W y = 0   Now xT W T W A − (A∗ )T W T W y = 0 if and only if W T W A − (A∗ )T W T W = 0. Therefore W T W A = (A∗ )T W T W

(A∗ )T W T W = W T W A (A∗ )T = (W T W ) A (W T W )−1  T A∗ = (W T W ) A (W T W )−1  −1  T = (W T W )T A (W T W )T  −1  T = (W )T W A ((W )T W )  H −1 H = W W A (W H W ).



CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

89

Example 8.12 Determine the adjoint of A under the inner product with respect to W , where     2 0 i 0 A= and W = . 0 −i 2i −i Solution.  −1 H A (W H W ) A∗ = W H W H  ! H  H  !−1   i 0 i 0 i 0 2 0 i 0 = 0 −i 2i −i 2i −i 2i −i 2i −i       −1  −i −2i i 0 i 0 −i −2i 2 0 = 0 i 2i −i 0 i 0 i 2i −i    2    −1 2 0 −i − 4i2 2i2 −i2 − 4i2 2i2 = 2 2 2i −i 0 i 2i2 −i2 −1     2 0 5 −2 5 −2 = −2 1 0 i −2 1    1 2 10 −4 = −2i i 2 5   10 − 4i −4 + 2i = . 20 − 10i −8 + 5i ♣

Theorem 8.13 Properties of the Adjoint: • (A∗ )∗ = A for any m × n matrix A. • (A + B)∗ = A∗ + B ∗ for any m × n matrices A and B . • (AB)∗ = B ∗ A∗ for any m × n matrices A and B . • (λA)∗ = λA∗ for any m × n matrix A and λ ∈ C. Theorem 8.14 Let A be an n × n matrix. Then the eigenvalues of AH A are nonnegative. Proof. Let A be an n×n matrix and λ be an eigenvalue of AH A. Clearly there exists a corresponding eigenvector v such that AH Av = λv. For the Euclidean inner product, hAv, Avi = hA∗ Av, vi = hAH Av, vi = hλv, vi = λhv, v i.

CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES We know that v 6= 0, therefore hAv, Avi and λhv, vi are nonnegative. Thus λ is nonnegative.

90 

Theorem 8.15 The eigenvalues of a hermitian matrix are real. Proof. Let A be a hermitian matrix. Let λ be an eigenvalue of A with a corresponding eigenvector v. Then λhv, v i = hλv, v i = hAv, vi = hv, A∗ vi = hv, AH vi = hv, Avi = hv, λvi = λhv, v i. Therefore λ = λ. Clearly λ must be real.



Theorem 8.16 Let A be a normal matrix and λ be an eigenvalue of A with an associated eigenvector v. Then λ is an eigenvalues of AH with a corresponding eigenvector v . Proof. Let A be a normal matrix and λ be an eigenvalue of A with an associated eigenvector v . Now hAv, Avi = hA∗ Av, vi = hAH Av, vi = hAAH v, vi = hAH v, A∗ vi = hAH v, AH vi. Consider hAv − λv, Av − λvi. Thus hAv − λv, Av − λvi = hAv, Avi − hAv, λv i − hλv, Avi + hλv, λvi = hAH v, AH vi − λ hAv, vi − λhv, Avi + λ λ hv, vi = hAH v, AH vi − λ hv, A∗ vi − λhA∗ v, vi + h λ v, λ v i = hAH v, AH vi − λhAH v, vi − λ hv, AH vi + h λ v, λ vi = hAH v, AH vi − hAH v, λ vi − h λ v, AH vi + h λ v, λ v i = hAH v − λv, AH v − λv i. Clearly Av − λv = 0 and hAv − λv, Av − λvi = 0. Therefore hAH v − λv, AH v − λvi = 0 and AH v − λv = 0. Thus λ is an eigenvalue of AH with a corresponding eigenvector v. 

CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

91

Theorem 8.17 Eigenvectors corresponding to distinct eigenvalues of normal matrices are orthogonal with respect to the Euclidean inner product. Proof. Let λ1 and λ2 be two distinct eigenvalues of a normal matrix with corresponding eigenvectors v1 and v2 . Clearly Av1 = λ1 v and Av2 = λ2 v. Now (λ1 − λ2 )hv1 , v2 i = λ1 hv1 , v2 i − λ2 hv1 , v2 i = hλ1 v1 , v2 i − hv1 , λ2 v2 i = hAv1 , v2 i − hv1 , AH v2 i by Theorem 8.16 = hAv1 , v2 i − hv1 , A∗ v2 i = hAv1 , v2 i − hAv1 , v2 i = 0. Clearly λ1 6= λ2 . Therefore hv1 , v2 i = 0 and v1 and v2 are orthogonal.

8.2



Unitary Matrices

Definition 8.18 A matrix U is unitary if U −1 = U H . Theorem 8.19 A matrix is unitary if and only if it’s rows (or columns) form an orthonormal set of vectors. Proof.(⇒) Let U be a unitary matrix. Designate the rows of U as u1 , u2( , . . . , un . Then the (i, j)th 1 i=j . Therefore element of U U H is hui , uj i. If U is unitary, then U U H = I and hui , uj i = 0 otherwise {u1 , u2 , . . . , un } is an(orthonormal basis. (⇐) Now suppose that the rows of U form an orthonormal 1 i=j . Therefore, U U H = I and U is unitary.  set, then hui , uj i = 0 otherwise Theorem 8.20 The product of unitary matrices of the same type is a unitary matrix. Proof. If A and B are unitary matrices of the same type, then (AB )−1 = B −1 A−1 = B H AH = (AB )H . 

Theorem 8.21 If U is unitary, then hU x, Uy i = hx, y i for all vectors x and y of appropriate dimension.

CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

92

Proof. Let U be a unitary matrix and x, y by vectors of appropriate dimension. For the Euclidean inner product: hx, Uyi = hUx, U ∗ Uyi hx, Uyi = hx, U H U yi hx, Uyi = hx, U −1 U yi = hx, yi. 

Theorem 8.22 All eigenvalues of a unitry matrix have absolute values equal to 1. Proof. Let λ ∈ C be an eigenvalue of a unitary matrix U with a corresponding eigenvector v. Then ¯ vi |λ2 |hv, vi = λλhv, = hλv, λvi = hUv, Uvi = hv, vi. 2 Therefore vi = 6 0. If λ = a + ib ∈ C, then λ2 = (a2 − b2 ) + i(2ab) and p |λ | = 1 since hv,p 2 2 2 2 2 2 |λ | = (a − b ) + 4a b = (a + b2 )2 = a2 + b2 . Therefore, if |λ2 | = 1, then |λ| = 1. 

Theorem 8.23 The determinant of a unitary matrix has absolute value equal to 1. Proof. Let U be a unitary matrix, then UU −1 = I det(UU −1 ) = 1 det(UU H ) = 1 det(U )det(U H ) = 1 det(U )det(U T ) = 1 det(U )det(U T ) = 1 det(U )det(U ) = 1. Let z = det(U ) = a + ib ∈ C. If zz = 1, then a2 + b2 = 1 and |det(U )| = 1.



CHAPTER 8. HERMITIAN MATRICES AND UNITARY MATRICES

93

Theorem 8.24 If U is unitary and A = U H BU , then B is normal if and only if A is normal. Proof. (⇒) Let A = U H BU and suppose that B is normal, then AAH = (U H BU )(U H BU )H = U H B UU H B H U = U H BB H U = U H B H B U = (U H B H )(UU H BU ) = AH A. (⇐) Let B = UAU H and suppose that A is normal, then B H B = (UAU H )H UAU H = UAH U H U AU H = U AH AU H = U AAH U H = (UAU H )(UAH U H ) = BB H ...


Similar Free PDFs