CLIENT CALCULATION OF PIPE RACK STRUCTURE PDF

Title CLIENT CALCULATION OF PIPE RACK STRUCTURE
Author Adrianus Hindradjaja
Pages 179
File Size 3.7 MB
File Type PDF
Total Downloads 261
Total Views 313

Summary

Joint Operating Body JOB NO. DOC. NO REV. Pertamina Medco E&P Tomori 9608 SNO - S - CC - 05 - 010 Sulawesi SU2573 B SHEET 1-15 SENORO GAS DEVELOPMENT PROJECT CIVIL / CIVIL CALCULATION CONTRACT NO. : K0498R/JOBT/MDP CALCULATION OF PIPE RACK STRUCTURE # 10 B 23-Jun-13 Issued for COMPANY Review AMP...


Description

Joint Operating Body Pertamina Medco E&P Tomori Sulawesi

JOB NO. 9608 SU2573

DOC. NO

REV.

SNO - S - CC - 05 - 010

B

SHEET 1-15 SENORO GAS DEVELOPMENT PROJECT CIVIL / CIVIL CALCULATION

CONTRACT NO. : K0498R/JOBT/MDP

CALCULATION OF PIPE RACK STRUCTURE # 10

B

23-Jun-13

Issued for COMPANY Review

REV

DATE

DESCRIPTION

AMP

HDY

SN

PREP'D REV'D CHK'D

FMM

JHH

END' APP'D D

BY DATE CLIENT

CALCULATION OF PIPE RACK STRUCTURE 10 SENORO GAS DEVELOPMENT PROJECT

# Doc. No.

SNO-S-CC-05-010

REV.

B

DATE.

23-Jun-13

TABULATION OF REVISED PAGES SHEET

REVISION B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X X X X X X x X X

Attach. A Attach. B Attach. C Attach. D Attach. E Attach. F Attach. G Attach. H Attach. I Attach .J Attach .K

X X X X X X X X X X X

SHEET

REVISION B

Page 2 of 15

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010 B 23-Jun-13

REVISION SUMMARY

REV. B

DATE

DESCRIPTION OF CHANGE

23-Jun-2013 Issued for Company Review

Page 3 of 15

CALCULATION OF PIPE RACK STRUCTURE # 10 SENORO GAS DEVELOPMENT PROJECT

Doc. No. REV REV. DATE.

SNO-S-CC-05-010 B 23-Jun-13

TABLE OF CONTENTS 1. GENERAL ………………………………………………………………………………………………………… 5 1.1 Scope ………………………………………………………………………………………………………… 5 1.2 Codes, Standards, and References …………………………………………………………………… 5 1.3 Units ……………………………………………………………………………………………………………… 5 1.4 Quality of Material …………………………………………………………………………………… 5 1.5 Unit Weight of Material …………………………………………………………………………… 6 1.6 Abbreviation ………………………………………………………………………………………………… 6 2. ANALYSIS METHOD ………………………………………………………………………………………… 7 2.1 Design g Concept p ………………………………………………………………………………………… 7 2.2 Design Criteria ………………………………………………………………………………………… 7 2.3 Design Loading ………………………………………………………………………………………… 7 2.4 Load Combination ………………………………………………………………………………………… 9 2.5 Allowable Deflection …………………………………………………………………………………… 11 3 STRUCTURAL MODELING …………………………………………………………………………………… 12 4 STEEL STRUCTURE CHECKING …………………………………………………………………………………… 12 g 4.1 Steel Stress Checking 4.2 Deflection Checking 5. FOUNDATION CHECKING

…………………………………………………………………………………… 12 …………………………………………………………………………………… 13 …………………………………………………………………………………… 15

ATTACHMENT A. PIPE RACK PLAN VIEW & SECTION B. PIPES, CABLE TRAY AND EQUIPMENT LOADING DATA C. STRUCTURAL MODELLING D. DESIGN LOAD E. STAAD INPUT DATA F. STRESS RATIO G. DEFLECTION DATA H. CONNECTION CHECK ANCHOR BOLT CAPACITY I. J FOUNDATION DESIGN K. STEEL & FOUNDATION MATERIAL TAKE OFF (MTO)

Page 4 of 15

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV.

.

SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010

B 23-Jun-13

1. General 1.1 Scope This document presents calculation of foundation and steel structure for pipe rack structure PR08. 1.2 Codes, Standards, and References 1 2

SNO-S-DB-001 Design Basis Tripatra-Samsung " Civil/Structural Design Criteria SNO-S-DB-001, Criteria." Job No 2894, Geotechnical Investigation For Senoro Gas Processing Plant Senoro-Central Sulawesi Indonesia,Rev 03 by Soilens,PT on March, 21st 2013.

3 4

ACI 318-08 " Building Code Requirements for Structural Concrete and Commentary." ASCE 7-10 " American Society of Civil Engineers - Minimum Design Loads for Buildings and Other Structures."

5 6 7

AISC-ASD " Manual of Steel Construction ", volume 2, 9th Edition UBC - 1997 1997, " Uniform Building Code Code." SNO-C-TS-101, Tripatra-Samsung " Earthquake Loads Calculation Procedure for Structures and Foundations. "

8 9

SNO-C-TC-102, Tripatra-Samsung " Wind Data Evaluation Report." SNO-S-TS-001, Tripatra-Samsung Specification " Spesification For Structural Steel Material. "

10 SNO-C-CC-001, " Calculation For Piling Capacity Design." 1.3 Units All Units are in SI Unit unless noted otherwise 1.4 Quality of Material Material Structural Steel, ASTM A 36 or JIS G3101 Grade SS400

Strength fy = fu = Ft all = Fv all =

Material Structural Concrete Levelling Concrete Reinforcing Bar : d 60 or BDeformed D f dB ASTM A615 grade Bar Material Anchor Bolt ASTM A 307 Grade C

HS Bolt, ASTM A 325 Weld Electrode (AWS D D.1.1, 1 1 E60xx)

fc' = fc' = f = fy fy = ft all = fv all = fy = fu = Fu = Fv all =

235 00 235.00 MPa 400.00 MPa MPa 141.00 MPa 94.00 Strength 28.00 MPa 17.50 MPa 390 00 MP 390.00 MPa Strength 240.00 MPa 137.30 MPa MPa 68.60 550.00 MPa 720.00 MPa 413.7 413 7 MPa 124.11 MPa

Page 5 of 15

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV.

.

SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010

B 23-Jun-13

1.5 Unit Weight of Material Material Reinforced Concrete (c) Lean Concrete (pc) Steel (s) Soil (so) Operating Liquid (L(o)) Water (L) Sand Gravel (g)

Unit Weight kN/m3 23.54 kN/m3 21.58 kN/m3 78.50 kN/m3 16.50 3 kN/m 10.60 kN/m3 10.00 3 kN/m 17.65

1.6 Abbreviation BCD : Ca : Cf : D : db : E : E : e : F : ft : fv : fy : G : h : I : ID : Kd : Kz : Kzt : LC1 : LC2 : Le : Mu :  : n1 : PE : PO : PT :

bolt circle diameter seismic coefficient force coefficient dead load diameter bolt young modulus earthquake Load (E) excentricity minimum bolt pitch bolt tensile strength bolt shear strength yield strength of reinforce steel gust effect factor height of structure from ground level importance factor inside diameter wind directionaly factor velocity pressure exposure coefficient topographic factor factored load combination unfactored load combination minim m bolt embedment minimum moment ultimate coefficient of friction number of bolt weight of pipe in empty condition piping load (operating condition) piping load (testing condition)

Page 6 of 15

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV.

.

SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010

B 23-Jun-13

QE :

weight of machinery incl. appurtenances and it is clasiffied as empty load (erection)

Qo : QT :

equipment weight (operating condition) equipment weight (testing condition)

qz

:

wind pressure

T TF

: :

tensile force thermal force

V Vs Vp W Wt Z

: : : : : :

shear force base shear shear of plate wind load weight of equipment and/or structure modulus section

2. Analysis Method 2.1 Design Concept - Loads to be considered in calculation consist of dead loads, live loads, pipe loads, equipment loads and environmental loads. - Stability :-

in transverse direction, structure are designed as reinforced steel frame with fixed connection in longitudinal direction, structure are designed as reinforced steel frame with pinned connection

Horizontal and vertical bracing is designed as truss member - Types of support is pinned connection in all direction. - Allowable Stress Design shall be used in the design of steel structure member conforming to AISC ASD. - The structure will be analyzed with STAADPro V8i structural analysis computer programming and as space frame analysis. 2.2 Design Criteria 2.2.1 Allowable Ratio - Allowable ratio for permanent is 1.00 with apply unfactored combination. - Allowable ratio for temporary is 1.33 with apply unfactored combination. 2.2.1 Allowable Deflection - Allowable ratio for vertical is L/240 with apply unfactored combination. - Allowable ratio for horizontal is L/200 with apply unfactored combination. 2.3 Design Loading 2.3.1 Primary Load The following loads and forces are considered in the design of Structure : 2.3.1.1. Dead Load (D) Selfweight of Steel Structure exclude plate connection, bolt & fireproofing. 2.3.1.2. Live Load (L) Any load not permanently fixed to the structure e.g loading caused by personnel, tools during maintenance. Live Load shall be applied on platform in the top level of rack, as servicing cooling tower access. Live Load in operating or maintenance platform are 2.50 kN/m2 Live Load = 2.5 x 3 = 7.5 kN/m ---> span 3 m

Page 7 of 15

.

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

SNO-S-CC-05-010

B

DATE.

23-Jun-13

2.3.1.3. Equipment Load (Q) Weight of equipment or machinery (ACHE) including appurtenances and it is classified as an empty (erection) load QE, an operating load Qo or a testing load QT. Dynamic load due to fan rotation has considered as additional static load that was determined based on the fan size. 2.3.1.4. Piping Load (P) Weight of pipe including appurtenances and it is classified as an empty (erection) load PE, an operating load PO or a testing load PT. Miscellaneous piping support attached on main structure that were not modeled on structure model, will be provided by piping. The miscellaneous piping loading at any position on platform were assumed that have been covered as live load on platform (170 kg/m2) 2.3.1.5. Cable Tray Load Weight of cable tray is included according to Electrical and Instrument information. Weight of cable tray is calculated as follow : - cable tray (900 mm = 150 kg,m; 600 mm = 100 kg/m; 300 mm = 50 kg/m) 2.3.1.6. Wind Load (W) Based on , 'Senoro Gas Development Project, SNO-C-TC-102, "Wind Data Evaluation Report"', wind load will be calculated by following formula : Wind Velocity (v) Wind Pressure (qz) ( )

= = = = = = = =

32.080 0.540 0.570 0.590 0.620 0.660 0.690 0.710

m/s Risk Category III & IV 2 kN/m kN/ h = 4,6 m kN/m2 h = 6,1 m kN/m2 h = 7,6 m 2 kN/m h = 9,1 m kN/m2 h = 12,2 m kN/m2 h = 15,2 m kN/m2 h = 18 m

2.3.1.7. Earthquake Load ( E) Based on, 'Senoro Gas Development Project, SNO-C-TS-101, "Earthquake Loads Calculation Procedure For Structure And Foundation "'', earthquake load will be calculated in accordance with UBC-97 as : Vs Vs Vs

= Cs x = 0.260 = 0.210

Wt x x

Wt Wt

,with

Cs Cs

= =

0.260 0.210

Transv Longit

Page 8 of 15

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV.

.

SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010

B 23-Jun-13

2.3.1.8. Thermal Load ( TF) a. Thermal Load due to Material Friction In design of pipe supports, horizontal friction forces due to thermal expansion or contraction of flare lines and stream lines, etc shall be applied at the support bearing surfaces. Thermal friction loads are calculated by estimating piping load by friction coeffficients () as follows:  = 0.3 ( steel to steel ) TF =  x gravity pipe operation load

(Design Criteria)

Pipe Weight (Wp)

Tf

NOTE :

The derived thermal forces based on normal and friction as described above is not used when thermal force from pipe stress analysis is given from piping. b. Thermal Load due to Pipe anchorage/ Supporting system Anchor and guide load is resulted from pipe stress analysis (PSA) which be generated from piping software analysis analysis. The PSA result were plotted on piping loading data number 2.3.1.9. Platform Load Weight of Platform = 0.25 Bar Φ 6 = 0.03 x Serrated

d2 x 78.5 x 11 0.01 x 1 x 78.5 x 35 Total Accessories + 10% Total

(Attachment B)

= = = = =

0.024 0.343 0 368 0.368 0.037 0.405

kN/m2 kN/m2 kN/m2 kN/m2 kN/m2

2.4 Load Combination 2.4.1 The following factored load combination is used to design concrete reinforcement by Load and Resistance Factored Design method: Empty Condition: LC 1-11 1.4(D + PE + QE ) LC 1-21 LC 1-22 LC 1-23 LC 1-24 LC 1-31 LC 1-32 LC 1-33 LC 1-34

1.2(D + PE + QE) + 1.6 W in Z(+) 1.2(D + PE + QE) + 1.6 W in Z(-) 1.2(D + PE + QE) + 1.6 W in X(+) 1.2(D + PE + QE) + 1.6 W in X(-) 1.2(D + PE + QE) + E in Z(+) 1.2(D 1 2(D + PE + QE) + E in Z(-) 1.2(D + PE + QE) + E in X(+) 1.2(D + PE + QE) + E in X(-)

Operating Condition: LC 1-41 1.4(D + PO + QO + TF(+)) LC 1-42 1.2(D + PO + QO + TF(+)) + 1.6 L

Page 9 of 15

.

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

DATE.

SNO-S-CC-05-010

B 23-Jun-13

LC 1-43 1.4(D + PO + QO + TF(-)) LC 1-44 1.2(D + PO + QO + TF(-)) + 1.6 L Operating Condition + Wind (on positive thermal): LC 1-51 1.2(D + PO + QO + TF(+)) + L + 1.6 W in Z(+) LC 1-52 1.2(D + PO + QO + TF(+)) + L + 1.6 W in Z(-) LC 1-53 1.2(D + PO + QO + TF(+)) + L + 1.6 W in X(+) LC 1-54 1.2(D + PO + QO + TF(+)) + L + 1.6 W in X(-) Operating Condition + Earthquake (on positive thermal): LC 1-61 1.2(D + PO + QO + TF(+)) + L + E in Z(+) LC 1-62 1.2(D + PO + QO + TF(+)) + L + E in Z(-) LC 1-63 1.2(D + PO + QO + TF(+)) + L + E in X(+) LC 1-64 1.2(D + PO + QO + TF(+)) + L + E in X(-) Operating Condition + Wind (on negative thermal): LC 1-71 1.2(D + PO + QO + TF(-)) + L + 1.6 W in Z(+) LC 1-72 1.2(D + PO + QO + TF(-)) + L + 1.6 W in Z(-) LC 1-73 1.2(D + PO + QO + TF(-)) + L + 1.6 W in X(+) LC 1-74 1.2(D + PO + QO + TF(-)) + L + 1.6 W in X(-) Operating Condition + Earthquake (on negative thermal): LC 1-91 1.2(D + PO + QO + TF(-)) + L + E in Z(+) LC 1-92 1.2(D + PO + QO + TF(-)) + L + E in Z(-) LC 1-93 1.2(D + PO + QO + TF(-)) + L + E in X(+) LC 1-94 1.2(D + PO + QO + TF(-)) + L + E in X(-) Test Condition: LC 1-80 1.2(D + PT + QT) + 1.6 (L/2) LC 1-81 0.9(D + PT + QT) + 1.6 (W/3) in Z(+) LC 1-82 0.9(D + PT + QT) + 1.6 (W/3) in Z(-) LC 1-83 0.9(D + PT + QT) + 1.6 (W/3) in X(+) LC 1-84 0.9(D + PT + QT) + 1.6 (W/3) in X(-) 2.4.2 The following unfactored load combination is used to steel structure design by Allowable Stress Design. Empty Condition: LC 2-11 D + PE + QE LC 2-21 D + PE + QE + W in Z(+) LC 2-22 D + PE + QE + W in Z(-) LC 2-23 D + PE + QE + W in X(+) LC 2-24 D + PE + QE + W in X(-) LC 2-31 D + PE + QE + E in Z(+)/1,4 LC 2-32 D + PE + QE + E in Z(-)/1,4 LC 2-33 D + PE + QE + E in X(+)/1,4 LC 2-34 D + PE + QE + E in X(-)/1,4

Increase in Allowable Stress 1.00 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

Page 10 of 15

.

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

DATE.

Operating Condition: LC 2-41 D + PO + QO + TF(+) LC 2-42 D + PO + QO + TF(-)

1.00 1.00

Operating Condition + Wind (on positive thermal): LC 2-51 D + PO + QO + TF(+) + L + W in Z(+) LC 2-52 D + PO + QO + TF(+) + L + W in Z(-) 53 D + PO + QO + TF(+) + L + W in X(+) LC 2 2-53 LC 2-54 D + PO + QO + TF(+) + L + W in X(-)

1.33 1.33 1 33 1.33 1.33

Operating Condition + Earthquake (on positive thermal): LC 2-61 D + PO + QO + TF(+) + L + E in Z(+)/1,4 LC 2-62 D + PO + QO + TF(+) + L + E in Z(-)/1,4 LC 2-63 D + PO + QO + TF(+) + L + E in X(+)/1,4 LC 2-64 D + PO + QO + TF(+) + L + E in X(-)/1,4

1.33 1.33 1.33 1.33

Operating Condition + Wind (on negative thermal): LC 2-71 D + PO + QO + TF(-) + L + W in Z(+) LC 2-72 D + PO + QO + TF(-) + L + W in Z(-) LC 2-73 D + PO + QO + TF(-) + L + W in X(+) LC 2-74 D + PO + QO + TF(-) + L + W in X(-)

1.33 1.33 1.33 1.33

Operating Condition + Earthquake (on negative thermal): LC 2-81 D + PO + QO + TF(-) + L + E in Z(+)/1,4 ( ) + L + E in Z(-)/1,4 () , LC 2-82 2 82 D + PO + QO + TF(-) LC 2-83 D + PO + QO + TF(-) + L + E in X(+)/1,4 LC 2-84 D + PO + QO + TF(-) + L + E in X(-)/1,4

1.33 1.33 1.33 1.33

Test Condition: LC 2-90 D + PT + QT LC 2-91 D + PT + QT + W in Z(+) LC 2-92 D + PT + QT + W in Z(-) LC 2-93 D + PT + QT + W in X(+) LC 2-94 D + PT + QT + W in X(-) LC 2-95 D + PT + QT + E in Z(+)/1,4 LC 2-96 D + PT + QT + E in Z(-)/1,4 LC 2-97 D + PT + QT + E in X(+)/1,4 LC 2-98 D + PT+ QT + E in X(-)/1,4

1.00 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

SNO-S-CC-05-010

B 23-Jun-13

2.5 Allowable Deflection 2.5.1 The limiting permissible vertical deflection for structural steel members shall be as specified below : - Beam for Structural componen: L/240 2.5.2 The limiting permissible horizontal displacement of structures : - Steel Structure : H/200 where : L = Theoretical span of beam H = Total Height of structures

Page 11 of 15

.

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

SNO-S-CC-05-010

DATE.

B 23-Jun-13

3. 3 Structural St t l Modeling M d li Structural modeling at the pipe rack is applied three dimensional with seismic analysis.

4. Steel Structure Checking 4.1 Steel Stress Checking Steel member stresses are checked in accordance with AISC by STAAD Pro V8i which presents the actual stress to the allowable Stress Ratio as SR. Pipe Rack PR-08 Elevation Profiles m H-588X300X12 H-588X300X12 EL+0,00 H-300x150x6,5 to H-300x150x6 H 300x150x6,5 5 EL+5,00 H-200x100x5,5 T-150x150 T-200x200 H-588X300X12 H-588X300X12 EL+5,00 H-300x150x6,5 to H 300x150x6,5 H-300x150x6,5 EL+7,00 H-200x100x5,5 T-150x150 T-200x200 H-588X300X12 H-588X300X12 EL+7,00 H-300x150x6,5 to H-300x150x6,5 , EL+10,00H-200x100x5,5 T-150x150 T-200x200 H-588X300X12 H-588X300X12 EL+10,00H-300x150x6,5 to H-300x150x6,5 EL+13,00H-200x100x5,5 T-150x150 T-200x200 H-588X300X12 H-588X300X12 EL+13,00H-400x200x8 to H-400x200x8 EL+16,00H-200x100x5,5 T-150x150 T-200x200

Steel Stress Ratio Permanent Temporary 0.357 0.857 0.640 0.369 0.244 0.243 0 361 0.361 0 374 0.374 0.089 0.093 0.092 0.120 0.306 0.582 0.214 0.417 0.155 0.417 0.465 0.467 0.210 0.278 0.074 0.083 0.106 0.121 0.101 0.218 0.189 0.329 0.094 0.354 0.274 0.277 0.154 0.212 0.069 0.088 0.057 0.076 0.105 0.243 0.163 0.277 0.127 0.333 0.414 0.420 0.437 0.749 0.032 0.065 0.030 0.110 0.117 0.253 0.476 0.570 0.848 0.922 0.558 0.561 0.471 0.479 0.166 0.264 0.159 0.305 0.184 0.285

Remarks Column Main beam Secondary beam Longitudinal beam Secondary longitudinal beam Horizontal Bracing Vertical Bracing Column Main beam Secondary beam Longitudinal beam Secondary longitudinal beam Horizontal Bracing Vertical Bracing Column Main beam Secondary beam Longitudinal g beam Secondary longitudinal beam Horizontal Bracing Vertical Bracing Column Main beam Secondary beam Longitudinal beam g Secondary longitudinal beam Horizontal Bracing Vertical Bracing Column Main beam Secondary beam Longitudinal beam Secondary longitudinal beam Horizontal Bracing Vertical Bracing

Page 12 of 15

.

CALCULATION OF PIPE RACK STRUCTURE Doc. No. # 10 REV. SENORO GAS DEVELOPMENT PROJECT

For Permanent condition, Max ratio

0.848

<

1.00

…OK

For Temporary condition, Max ratio

0.922

<

1.33

…OK

DATE.

SNO-S-CC-05-010

B 23-Jun-13

4.2 Deflection Checking Deflection check for steel structures is performed based on the unfactored load combinations. (1). Vertical deflection (dv) Check. dv allowed = L / 240 (2). Horizontal Deflection (dh) Check: dh allowed = H / 200 Where, L = horizontal sp...


Similar Free PDFs