Control Systems Formula Sheet PDF

Title Control Systems Formula Sheet
Course Aerospace Systems, Modelling & Control
Institution University of Hertfordshire
Pages 12
File Size 451.8 KB
File Type PDF
Total Downloads 30
Total Views 147

Summary

Control Systems Formula Sheet...


Description

University of Hertfordshire Faculty of Engineering & Information Sciences Control Systems Formula Sheet

1.

DAG 29/09/03

SYSTEMS MODELLING

Time Domain

Laplace Domain

f(t)

F(s) or L[f(t)]

a.f(t) + b.g(t)

(a and b constant)

a.F(s) + b.G(s) sF(s) − f ( 0)

df f ′( t ) = f& ( t ) = dt d2 f f ′′( t) = 2 dt n d f dt n

s2 F( s) − sf ( 0) − f ′(0) s n F( s) − s n−1 f ( 0) − s n− 2 f ′ (0)− ....− f ( n−1) (0) 1 F(s) s e-sT F(s)

t

∫ f ( t) dt 0

f(t-T)

(T is a time delay) δ(t)

1

1

1 s n!

tn e

sn+1 1 s+ a n!

-at

tn e-at

( s+ a) n+1 sin(bt)

b s + b2 s 2 s + b2 b 2

cos(bt) e-at sin(bt)

(s + a )

2

+ b2

s+a

e-at cos(bt)

(s + a )2 + b 2 Initial and Final Value Theorem f ( 0) =

lim t→0

lim

[f ( t )] = s →∞ [sF(s)]

f ( ∞) =

1

lim t→∞

lim

[ f( t)] = s→0 [ sF( s)]

Transfer Function Definition

G(s) =

The Laplace Transform of the output The Laplace Transform of the input

=

L [y(t) ]

Y(s) U(s)

=

L [ u(t) ]

Assuming all initial conditions are zero.

System

Transfer Function

Differential Equation

Gain

G(s) = K

y = Ku

Integrator

First Order

Second Order

System

G (s) =

G (s) =

G( s) =

1 s

y=

K 1 + sT

T

Kω n2

dy + y = Ku dt

d 2y dy + 2ζω n + ω n2y = Kω n2u 2 dt dt

s2 + 2ζω n s+ ω 2n

Unit Step Response (assuming all ic’s = 0)

−t   y = K 1 − e T   

First Order

Second Order

∫ u. dt

  ζω n t  sin (ω d t)   y = K1 − e −ζωn cos(ω d t ) + ωd     where ω d = ω n 1 − ζ 2 ,



overshoot = e

ωn =

πζ 1 − ζ2

2

,

ζ=

π t max 1− ζ 2

,

( ln(overshoot)) 2 2 π 2 + ( ln( overshoot) )

Rules for Block Diagram Manipulation

GA (s)

GB (s)

GA (s)GB(s)

GA (s) GA (s) ± GB (s)

+ ± GB (s)

G(s)

= G(s)

G(s)

1 G(s) G(s) G(s)

+

G(s)

+

G(s)

±

± G(s)

G(s)

+

+

G(s) ±

± 1 G(s)

+

G(s) G(s) 1 + G(s)H(s) H(s)

3

2.

SYSTEM PERFORMANCE

y ss =

Steady State Output

lim lim y( t ) = sY (s) t→∞ s→0

e ss = u - yss

Steady State Error

Steady State Error for Unity Feedback Systems Step u(t) = 1 Type 0

e ss =

1 1+ K p

Type 1

ess = 0

Type 2

ess = 0

Ramp u(t) = t

Parabolic u(t) = t2/2

ess = ∞

ess = ∞

ess =

ess = ∞

1 Kv

ess = 0

Position Error Constant

Velocity Error Constant

Acceleration Error Constant

ess =

Kp =

lim [ G o ( s)] s →0

Kv =

lim [ sGo( s) ] s →0

Ka =

4

lim s→0

[s G (s)] 2

o

1 Ka

3.

SIMPLE CONTROLLERS

Controller Gc(s) Proportional

K

K+

Proportional + Integral

Ki s

s +α  K or K   where α = i K  s 

K + K ds

Proportional + Derivative

or K (1 + sTd) where Td = K d K K+

Proportional + Integral + Derivative (Three Term Controller) K

Lead Controller or Lag Controller or

4.

Ki + Kd s s

s +a s+b

where a < b

1 + sT 1+ sα T s +a K s+b K

K

1 + sT 1+ sα T

where α < 1 where a > b

where α > 1

ROUTH STABILITY CRITERION

D(s) = ansn + an-1sn-1 + an-2sn-2 + an-3sn-3 + an-4sn-4 + an-5sn-5 + ... = 0 sn

an

an-2

an-4

n-1

s

an-1

an-3

an-5

sn-2 . . . s0

bn-1 . . . hn-1

bn-3 . . .

bn-5 . .

5

bn −1 =

a n −1 a n − 2 − a n a n −3 a n− 1

b n− 3 =

a n −1 a n −4 − a n a n −5 a n −1

5.

ROOT LOCUS

No

Drawing Rules

1

All loci start for K = 0 at the Open Loop Poles and finish for K = ∞ at either Open Loop Zeros or s = ∞.

2

There will always be a locus on the real axis to the LEFT of an ODD number of Open Loop Poles and Zeros.

3

If there are n Open Loop Poles and m Open Loop Zeros, there will be n-m loci ending at infinity on asymptotes at angles to the real axis of

±

4

180° , n −m

±

540° , n−m

±

900° , K n− m

The asymptotes meet on the real axis at m

n

∑ p i - ∑ zi i =1

σ =

i =1

n - m

where pi is the position of the i’th open loop pole and zi is the position of the i’th open loop zero.

5

Where two real loci meet on the real axis they “breakaway” from the real axis at ±90° to form two complex loci, symmetrical about the real axis. Where two complex loci meet on the real axis they “break-in” to form two real loci, moving in opposite directions along the real axis. The “breakaway” and “break-in” points are given by the roots of

6

dK = 0 ds

The points of intersection of a locus with the imaginary axis can be determined by solving the equation

D ( j ω)

+

KN ( j ω )

=

0

Remember both the real part and the imaginary parts must be satisfied in this equation. Hence this will give two simultaneous equations one that will give values of ω while the other gives the K value at the crossing point.

7

The angle of departure of a locus from a complex open loop pole is given by;

φ d = 180° −

n

∑φ i =1 i≠ d

m

i

+

∑ψ

i

i =1

where φi is the angle from the i’th open loop pole and ψi is the angle from the i’th zero. The angle of arrival of a locus at a complex zero is given by; m

n

ψa = 180 °

+

∑ φi i= 1

6



∑ψ i= 1 i≠ a

i

n

Magnitude Condition

∏P

i

K=

i=1 m

∏Z

i

i =1

m

n

180° =

Angle Condition

∑φ

i

∑ψ

-

i =1

ω=±

Lines of constant damping

1 - ζ2 ζ

i

i =1

σ

where s = σ + jω

NB Straight line through the origin of the s plane. Also lines makes an angle cos-1 ζ with the negative real axis

Lines of constant undamped natural frequency

6.

σ 2 + ω 2 = ω 2n NB Circle with centre on the origin of the s plane and radius ωn

FREQUENCY RESPONSE METHODS

y(t) = R.sin(ωt + φ)

u(t) = sin(ωt)

G(s) R = G ( jω ) = a 2 + b 2

G(jω ) = a(ω ) + jb(ω )

 b φ = ∠G( jω) = tan − 1    a

g = 20 log 10 R y(t) = R.sin(ωt + φ)

u(t) = sin(ωt) G1(s)

R = R 1R 2R 3

G2 (s)

G3 (s)

g = g1 + g 2 + g3

7

φ = φ1 + φ 2 + φ3

Nyquist Diagrams of Common System Elements

R

φ

K



G(s)

Nyquist Diagram

Gain Term

K

K

Integrator 1 s

1 ω

-90°

ω

90°

Differentiator

s

First Order “Lag” 1 − tan − (ωT )

1 1 1 + sT

1

1 + ω 2T 2

First Order “Lead” tan −1( ωT)

1 + ω 2T 2

1 + sT

Second Order Term ω 2n s2 + 2 ζωn s + ω2n

 2ζω ω  − tan− 1 2 n 2   ωn − ω 

ω2n



2 n

− ω2

)

2

+ ( 2ζω nω )

2

Pure Time Delay

e − sTD

−ωTD

1

(in radians)

8

1

Bode Plots of Common System Elements

g (dB) G(s)

Phase Plot

Gain Plot

φ(deg)

Gain Term 20log10 K

2 0 lo g 1 0 K

0

K 0°  1 20 log10   ω

Integrator 1 s

1 0

0

-90° -20 dB/dec

20 log10 ( ω )

Differentiator s

20 dB/dec

-90

90

90° 0

0 1

First Order “Lag” 1 1 + sT

First Order “Lead” 1 + sT

 1 20log10   1 + ω2 T2

   

1/T 0

-3dB

ω n2 s + 2 ζω ns + ω 2n

2 n

− ω2

)

2

1/T

10/T

20 dB/dec 90

3dB

45

0

   2 + (2ζω n ω )  

0

-20 log10(2ζ)

ω n2



0.1/T

-90

1/T

2

10/T

-20 dB/dec

2 2 20log10  1 + ω T   

  20 log 10   

1/T

-45

− tan −1 (ωT )

tan −1( ωT)

Second Order Term

0.1/T 0

ωn 0

0

ωn -90

 2ζω ω  − tan −1 2 n 2   ωn − ω 

-40 dB/dec

9

180

7.

DIGITAL CONTROL

z Domain (T = sample time period) F(z) or Z[f(k)]

Discrete Time Domain f(k)

Laplace Domain F(s)

a.f(k) + b.g(k)

a.F(z) + b.G(z)

a.F(s) + b.G(s)

f(k+1)

zF(z) - zf(0)

esT F(s)

f(k-1)

z-1F(z)

e-sT F(s)

δ(k)

1

1

δ(k-n)

z-n

e-snT

1

z z−1 Tz

1 s 1 s2

k

( z − 1) 2 1 2 k 2!

T2 2!

e-ak

 z (z + 1)   3   ( z − 1)  z

1 s

1 s+a 1

z − e − aT Tze −aT

ke-ak

(z − e ) −aT

1 - e-ak -ak

k - (1 - e )/a

(s + a )2

2

z(1 − e − aT )

[

( z − 1) (z − e

− aT

a s (s + a )

)

z z (aT − 1 + e −aT ) + (1 − e −aT − aTe −aT a( z − 1) ( z − e

− aT

2

3

)

]

a s (s + a ) 2

sin(ak)

z sin( aT)

a

cos(ak)

z − 2 z cos( aT) + 1 z(z − cos( aT))

s + a2 s s2 + a 2

2

z 2 − 2z cos( aT) + 1 e-ak sin(bk) e-ak cos(bk)

z e− aT sin( bT) z 2 − 2ze−aT cos( bT) + e− 2aT

( s + a) 2 + b2

z(z − e− aT cos( bT))

s+ a

z 2 − 2ze −aT cos( bT) + e −2 aT Zero Order Hold (A/D and D/A converters)

2

GH (z)

10

b

(s + a )

2

+ b2

1− e − sT s

8.

STATE SPACE METHODS

Standard Form for State Space Model

Digital

x& = Ax + Bu

x (k + 1) = Fx (k ) + G u (k )

y = Cx + Du

y(k ) = C x (k ) + Du ( k )

G (s) = C (sI − A ) B + D

G (z ) = C( zI − F) G + D

det( sI − A) = 0

det ( zI − F ) = 0

Characteristic Equation

t   x( t) = e  x(0) + e− Aτ Bu(τ ) dτ   0



At

[

Φ( t) = eAt = L-1 ( sI − A )− 1

Transition Matrix

Φ ( t ) = e At = I + At + State Feedback Equation

Characteristic Equation with state feedback

x (k + 1) = F k+ 1x (0) +

]

G = A −1 [F − I ]B

x& = Ax + B( u − Kx)

x (k + 1) = Fx (k ) + G( u (k ) − K x ( k ))

det (sI − A + BK) = 0

det ( zI − F + GK ) = 0

]

y =

0

1

0

L

0

0

1

L

M

M

M

O

0

0 − a1

0

L

− a2

L

− a0

[b 0

∑ FiGu (k − i )

F = eAT

A 2 t 2 A3 t3 + +L 3! 2!

[

   x& c =     

k

i= 0

2 n −1 M c = BM ABMA BMLM A B

Controllability Matrix Controllable Canonical Form

−1

−1

Transfer Function Matrix

State Time Response

Continuous

b 1 L L b n− 2

0  0   M x c  1  − a n −1

Mc

 0  0   + M u    0  1  

 0  0  xc (k + 1) =  M   0  − a0 y(k ) =[ b0

b n− 1]xc

11

[

]

= GM FGM F2 GMLMFn − 1G

1

0

0

1

L L

M

M

O

0

0

L

− a1

− a2

L

b1 L L b n− 2

b n − 1]x c (k)

0   0  0 0     M  xc (k) +  M u (k)    1   0 − an −1   1

Ackermann’s Formula for State Feedback

If desired CE is s n + α n− 1s n− 1 + L + α 1s + α 0 = 0

K = [ 0 0 K 1] M−c 1φ ( A)

K = [ 0 0 K 1] M −c1 φ( F)

where φ(A ) = α 0I + α 1A + L + α n − 1A n−1 + A n

State Estimator Equation

Characteristic Equation for a State Estimator

y (k ) − yˆ(k )) x (k + 1) = Fxˆ(k ) + Gu(k ) + P ( ~

det( sI − A + PC) = 0

det (zI − F + PC) = 0

 C    CA  =  CA 2     L  n −1  CA 

Mo

 0  1  = x& o  0   L  0

0

L

0

0

L

0

1

M

0

L

O

L

0

L

1

− a0   b0   b  −a 1   1  −a 2 x o +  b 2  u    M   M    −a n − 1  b n − 1

If desired CE is s n + α n− 1s n− 1 + L + α 1s + α 0 = 0

[

P = φ(A )M −o1 [ 0 0 K 1]

 0   1 xo (k + 1) =  0   L  0  y(k )= [0 0 0 L

y = [0 0 0 L 0 1 ]x o

Ackermann’s Formula for State Estimators

where φ( F ) = α 0I + α 1F + L + α n− 1F n− 1 + F n

x&$ = Ax$ + Bu + P( ~ y − y$ )

Observability Matrix

Observable Canonical Form

If desired CE is z n + α n −1 z n −1 + L + α1 z + α 0 = 0

]T

Mo

 C   CF  = CF 2     L  n− 1  CF 

0

L

0

0 1

L

0 0

L

M O

L

0

L

1

 b0       b1    xo (k) +  b 2  u (k )    M   M     − a n− 1 bn −1  − a0 − a1 − a2

0 1]xo (k)

If desired CE is z n + α n −1 z n −1 + L + α1 z + α 0 = 0

[

]T

P = φ (F )M −o1 [0 0 K 1 ]

where φ(A ) = α 0I + α 1A + L + α n − 1A n−1 + A n

12

where φ( F ) = α 0I + α 1F + L + α n− 1F n−1 + F n...


Similar Free PDFs