Elxth Edition in SI Units PDF

Title Elxth Edition in SI Units
Author Daffa Mora
Pages 749
File Size 93.2 MB
File Type PDF
Total Downloads 26
Total Views 158

Summary

Elxth Edition Introduction to in SI Units THERMODYNAMICS Sixth Edition in S I Units Smith .T=8 2bOl - C.1 Je M. Smith H. C. Van Ness M. M. Abbott 9 ~. I \ INTRODUCTION TO CHEMICAL ENGINEERING Sixth Edition in SI Units J. M. Smith Professor Emeritus of Chemical Engineering University of California, D...


Description

Introduction to

Elxth Edition in SI Units

THERMODYNAMICS Sixth Edition in S I Units

Smith

.T=8 2bOl

-

C.1

9 ~. I

\

Je M. Smith

H. C. Van Ness

M. M. Abbott

INTRODUCTION TO CHEMICAL ENGINEERING Sixth Edition in SI Units

J. M. Smith Professor Emeritus of Chemical Engineering University of California, Davis

H. C. Van Ness Institute Professor Emeritus of Chemical Engineering Rensselaer Polytechnic Institute

M. M. Abbott Professor of Chemical Engineering Rensselaer Polytechni? ~istitute '

Adapted by

B. I. Bhatt Vice President, Unimark Remedies Ahmedabad

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogota Caracas KualaLumpur Lisbon London Madrid MexicoCity Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS Sixth Edition in SI Units Exclusive rights by McGraw-Hill Education (Asia), for manufacture and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill. Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright O 2001, 1996, 1987, 1975, 1959, 1949 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of The McGrawHill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning. Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

Sixth Edition in SI Units Adapted by Tata McGraw-Hill by arrangement with The McGraw-Hill Companies, Inc., New York. Notice: Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. 10 09 08 07 06 05 04 03 02 01 20 09 08 07 06 05 04 CTF BJE

Library of Congress Cataloging in Publication Data Smith, J. M. (Joe Mauk) Introduction to chemical engineering thermodynamics 1 J. M. Smith, H.V. Van Ness, M. M.Abbott.-6th ed. p. cm. Includes bibliographical references and index. ISBN 0-07-240296-2 1. Thermodynamics. 2. Chemical Engineering. I. Van Ness, H.C. (Hendrick C.) 11. Abbott,MichaelM. III. Title. IV. Series. TP149. S582 2001 660'.2969 dc-21 00-051546 When ordering this title, use ISBN 007-008304-5 Printed in Singapore

Contents

List of Symbols

ix

Preface

xv

1 INTRODUCTION

1

TheScopeofThermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Measures of Amount or Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. . Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9. . Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .

2 THE FIRST LAW AND OTHER BASIC CONCEPTS 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12

Joule's Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Energy Balance for Closed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . Thermodynamic State and State Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 . The Phase Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 . The Reversible Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Constant-V and Constant-P Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 . Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 . Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Mass and Energy Balances for Open Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 .

3 VOLUMETRIC PROPERTIES OF PURE FLUIDS 3.1 3.2 3.3 3.4 3.5

18

58

PVT Behavior of Pure Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Virial Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 . The Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 . Application of the Virial Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Cubic Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi

Contents

3.6 Generalized Correlations for Gases .........................................95 3.7 Generalized Correlations for Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 4 HEAT EFFECTS 4.1 4.2 4.3 4.4 4.5 4.6 4.7

Sensible Heat Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Latent Heats of Pure Substances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 . Standard Heat of Reaction ................................................126 Standard Heat of Formation ...............................................127 Standard Heat of Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Temperature Dependence of A H a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 Heat Effects of Industrial Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

5 THE SECOND LAW OF THERMODYNAMICS 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11

148

Statements of the Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 Heat Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 Thermodynamic Temperature Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 Entropy Changes of an Ideal Gas .........................................159 Mathematical Statement of the Second Law ...............................162 Entropy Balance for Open Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 Calculation of Ideal Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 . Lost Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Third Law of Thermodynamics 176 Entropy from the Microscopic Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

6 THERMODYNAMIC PROPERTIES OF FLUIDS 6.1 6.2 6.3 6.4 6.5 6.6 6.7

116

186

Property Relations for Homogeneous Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 Residual Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 Residual Properties by Equations of State .................................. 202 Two-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 Thermodynamic Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Tables of Thermodynamic Properties ......................................212 Generalized Property Correlations for Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

7 APPLICATIONS OF THERMODYNAMICS TO FLOW PROCESSES

235

7.1 Duct Flow of Compressible Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 7.2 Turbines (Expanders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 . 7.3 Compression Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

Contents

vii

8 PRODUCTION OF POWER FROM HEAT

269

8.1 The Steam Power Plant ...................................................270 8.2 Internal-CombustionEngines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 8.3 Jet Engines; Rocket Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 Problems ................................................................290 9 REFRIGERATION AND LIQUEFACTION 9.1 9.2 9.3 9.4 9.5 9.6

The Carnot Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 The Vapor-Compression Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295 The Choice of Refrigerant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 Absorption Refrigeration .................................................301 The Heat Pump ..........................................................303 . Liquefaction Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Problems ...............................................................310

10 VAPORLIQUID EQUILIBRIUM: INTRODUCTION 10.1 10.2 10.3 10.4 10.5 10.6

314

The Nature of Equilibrium ..............................................314 The Phase Rule. Duhem's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 VLE: Qualitative Behavior ..............................................317 Simple Models for VaporJLiquid Equilibrium ............................. 326 VLE by Modified Raoult's Law ..........................................335 VLE from K-Value Correlations .........................................339 Problems .............................................................. 346

11 SOLUTION THERMODYNAMICS: THEORY 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9

294

352

Fundamental Property Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 The Chemical Potential and Phase Equilibria .............................. 354 Partial Properties ....................................................... 355 Ideal-Gas Mixtures .....................................................365 Fugacity and Fugacity Coefficient: Pure Species ........................... 368 Fugacity and Fugacity Coefficient: Species in Solution .....................374 Generalized Correlations for the Fugacity Coefficient ......................380 The Ideal Solution ...................................................... 384 Excess Properties.......................................................386 Problems ..............................................................393

12 SOLUTION THERMODYNAMICS: APPLICATIONS ....................... 400 12.1 12.2 12.3 12.4

Liquid-Phase Properties from VLE Data ..................................400 Models for the Excess Gibbs Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Property Changes of Mixing ............................................. 419 Heat Effects of Mixing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426 Problems .............................................................. 440

...

Contents

Vlll

13 CHEMICAL-REACTION EQUILIBRIA 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10

The Reaction Coordinate ...............................................451 Application of Equilibrium Criteria to Chemical Reactions ................ 455 The Standard Gibbs-Energy Change and the Equilibrium Constant ....... :. 456 Effect of Temperature on the Equilibrium Constant ....................... 458 Evaluation of Equilibrium Constants .................................... 462 Relation of Equilibrium Constants to Composition ........................464 Equilibrium Conversions for Single Reactions ............................468 Phase Rule and Duhem's Theorem for Reacting Systems ..................481 Multireaction Equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .484 Fuelcells ............................................................495 Problems .............................................................499

14 TOPICS IN PHASE EQUILIBRIA 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9

450

507

The Gamma / Phi Formulation of VLE ....................................507 VLE from Cubic Equations of State ......................................518 Equilibrium and Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534 Liquid 1Liquid Equilibrium (LLE) ....................................... 541 Vapor / Liquid / Liquid Equilibrium (VLLE) ............................... 549 Solid / Liquid Equilibrium (SLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Solid1Vapor Equilibrium (SVE)..........................................561 Equilibrium Adsorption of Gases on Solids ............................... 565 Osmotic Equilibrium and Osmotic Pressure ............................... 580 Problems ..............................................................583

15 THERMODYNAMIC ANALYSIS OF PROCESSES

590

15.1 Thermodynamic Analysis of Steady-State Flow Processes .................. 590 Problems .............................................................. 599 16 1NTRODUCTION TO MOLECULAR THERMODYNAMICS 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8

601

Molecular Theory of Fluids..............................................601 Second Virial Coefficients from Potential Functions........................ 608 Internal Energy of Ideal Gases: Microscopic View ......................... 611 Thermodynamic Properties and Statistical Mechanics ...................... 614 Hydrogen Bonding and Charge-Transfer Complexing ...................... 616 Behavior of Excess Properties ...........................................619 Molecular Basis for Mixture Behavior .................................... 622 VLE by Molecular Simulation ........................................... 626 Problems .............................................................. 627

A Conversion Factors and Values of the Gas Constant

629

B Properties of Pure Species

631

C Heat Capacities and Property Changes of Formation

634

D Representative Computer Programs

639

D.l Defined Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .639 D.2 Solution of Example Problems by ~ a t h c a d @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .642

E The LeeIKesler Generalized-correlation Tables

645

F Steam Tables

662

F.l Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 F.2 Steam Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665 G Thermodynamic Diagrams H UNIFAC Method I Newton's Method Author Index Subject Index

List of Symbols

Area Molar or specific Helmholtz energy r U - TS Parameter, empirical equations, e.g., Eq. (4.4), Eq. (6.71), Eq. (12.14) Acceleration Molar area, adsorbed phase Parameter, cubic equations of state Partial parameter, cubic equations of state Second virial coefficient, density expansion Parameter, empirical equations, e.g., Eq. (4.4), Eq. (6.71), Eq. (12.14) Second virial coefficient, pressure expansion Functions, generalized second-virial-coefficient correlation Interaction second virial coefficient Parameter, cubic equations of state Partial parameter, cubic equations of state Third virial coefficient, density expansion Parameter, empirical equations, e.g., Eq. (4.4), Eq. (6.71), Eq. (12.14) Third virial coefficient, pressure expansion Molar or specific heat capacity, constant pressure Molar or specific heat capacity, constant volume Standard-state heat capacity, constant pressure Standard ...


Similar Free PDFs