Enzyme Kinetics Practice Problems PDF

Title Enzyme Kinetics Practice Problems
Author Satyanarayan Dev
Course Biochemical Engineering
Institution Florida Agricultural and Mechanical University
Pages 6
File Size 1014.2 KB
File Type PDF
Total Downloads 89
Total Views 165

Summary

These are problems and solutions for enzyme kinetics using Michaelis Menton Kinetics in Biochemical Engineering. Great for solving/optimizing enzyme bioreactors...


Description

Assignment 1 Solutions Problem 3.1

a.) Equilibrium approach * r values are the same as k values all are rate constants

r1 (S)( E ) = r2 ( ES)1

(1)

r3 ( ES) 1 = r4 ( ES) 2

(2)

( E0 ) = ( E ) + ( ES)1 + (ES) 2

(3)

r r3

from (2)

( ES)1 = 4 ( ES) 2

(4)

r2r4 ( ES) 2 r1 r3 ( S)

(5)

from (1) + (4) ( E ) =

Substitute (4) and (5) into (3):

æ r r4 + r1 r4 (S ) + r1 r3 (S ) ö ÷÷ ( ES) 2 r1 r3 ( S) è ø r1 r3 (E 0 )(S ) \ ( ES ) 2 = r2 r4 + r1 r4 ( S) + r1 r3 ( S)

( E 0 ) = çç 2

rate =

r5 E 0 S Km 2 ( Km1 +S ) +S

where Km 1 =

r2 r , Km 2 = 4 r1 r3

b.) Quasi–steady–state approach

d ( ES ) 1 dt d ( ES ) 2

= r1 ( E)( S) - r2 ( ES) 1 + r4 ( ES) 2 - r3 ( ES) 1 » 0

(6)

= r3 ( ES) 1 - r4 ( ES) 2 - r5 ( ES) 2 » 0

(7)

dt from (7)

( ES)1 =

r4 + r5 ( ES) 2 r3

(8)

ær r +r r +r r ö from (6) + (8): (E ) = ç 2 4 2 5 3 5 ÷ (ES )2 ç ÷ r1 r3 (S ) è ø substitute (8) and (9) into (3):

1

(9)

æ r r4 + r2 r5 +r3 r5 +r1 r4 (S ) +r1 r5 (S ) +r1 r3 (S ) ö ES ÷÷ ( )2 r1 r3 (S ) è ø æ ö r1 r3 (E 0 )(S ) ( ES)2 = çç ÷÷ è r2 r4 + r2 r5 + r3 r5 + r1 r4 (S ) + r1 r5 (S ) + r1 r3 (S ) ø r5 E 0 S \ rate = ( Km2 + r5 r3 )( Km1 + S) + r5 r1 +S r r where Km1 = 2 and Km2 = 4 r1 r3

( E0 ) = çç 2

Problem 3.2 * r values are the same as k values all are rate constants

E +S d ( ES ) dt rate =

r1 r-1

( ES)

r2 r-2

E +P

= r1 ( E )(S) + r-2 ( E )( P ) - r-1 (ES ) - r2 (ES ) » 0 d ( P) dt

= r2 ( ES) - r- 2 ( E )( P )

( E0 ) = ( E ) + ( ES) , from (1): ( E ) =

(2)

\ ( E ) = ( E 0 ) - ( ES)

r-1 + r2 (ES ) r1 (S ) +r-2 (P )

Substitute (3) and (5) into (2):

r1 r2 E0 ( S) + r2 r-2 E0 ( P ) - r - 2 ( E 0 - ( ES)) ( P) r- 1 + r2 + r1 (S ) + r- 2 ( P )

Substituting (ES) in terms of E0:

rate =

r1 r2 E ( S) - r-1 r-2 E0 ( P) r-1 + r2 + r1 (S ) + r- 2 (P )

LetVS = r2 E0 and VP = r-1 E0

rate =

(3) (4)

æ r (S ) + r- 2 (P ) + r- 1 + r2 ö Combine (3) + (4): ( E 0 ) = ç 1 ES ç ÷÷ ( ) r1 (S )+ r-2 (P ) è ø E 0 ( r1 (S ) + r-2 (P ) ) \ ( ES) = r1 (S ) + r-2 (P ) + r-1 +r2

rate =

(1)

r1 Vs ( S) - r-2 VP ( P ) r-1 + r2 + r1 (S ) + r- 2 (P )

2

(5)

Divide top and bottom by (r-1 + r2) and let 1 r1 1 r and = = -2 1 K m r-1 + r 2 K P r- 1 + r 2

\ rate =

(V

s

K1m ) S - ( VP K P ) P S P 1+ 1 + K m KP

Problem 3.3

k-1 + k2 = 4.5´ 10-5 M k1

a)

K¢m =

b)

E 0 = 10-6 M S = 10 -3 M V=

Vm + S K1m + S

but Vm = r2 E 0

\

V = 9.58´ 10-4 Msec-1

Problem 3.4

Plot 1/V versus 1/S (Lineweaver – Burk plot) y – intercept =

Hydration:

1 1 -1 , x – intercept = = Vm k 2 E 0 Km

1 40 = + 4 ´103 V (Co 2 )

1 V = 2.50 ´ 10- 4 M sec- 1 = 4000M -1 sec ® m Vm r2 = 8.93 ´10 4sec - 1 -1 - 4000 = = -100M-1 ® K m = 0.01M Km 40 Dehydration:

1 163.15 = + 1.31´ 104 V ( HCO 3 )

3

1 Vm = 7.61´ 10-5 M sec-1 -1 4 1.31 10 M sec = ´ ® 4 1 Vm r2 = 2.72 ´10 sec -1 - 1.31´ 10 4 - 1 = M ® K m = 1.24 ´ 10- 2 M Km 163.15

Problem 3.5 a.)

Plot 1/V versus 1/S:

-1

1 1 = 9.525 + 0.60 V S

-0.60 = -0.063M-1 \ K m,app = 16.0g S / L K m,app 9.525 Since Km,app> Km the inhibitor is competitive. =

b.)

æ ( I) ö K m,app = K m ç1 + ÷ è KI ø ( I) = 1.37g I L KI = K m,app K m - 1 4...


Similar Free PDFs