Formula PDF

Title Formula
Course Physics
Institution Cardiff University
Pages 36
File Size 3.3 MB
File Type PDF
Total Downloads 62
Total Views 159

Summary

Formula book Cardiff University...


Description

eiθ

n

n

n

n

R

∇ φ(x, y, z) F(x, y, z) = Fx i + Fy j + Fz k

F(x, y, z) = Fx i + Fy j + Fz k

∇2 ∇2

(r, φ, z) (r, θ, φ)

x

dt , x > 0, t 1 loga x = (logb x)(loga b) 1 loga b = logb a ax = exp (x ln a) ln x = loge x =

sec θ = 1/ cos θ

ˆ

e = 2.718281828 . . .

cosec θ = 1/ sin θ

cot θ = 1/ tan θ

sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ 2 2 2 2 2 sin θ + cos θ = sec θ − tan θ = cosec θ − cot2 θ = 1

sin(A ± B) = sin A cos B ± cos A sin B cos(A ± B) = cos A cos B ∓ sin A sin B tan A ± tan B tan(A ± B) = 1 ∓ tan A tan B 2 sin A cos B = sin(A + B) + sin(A − B )

2 cos A cos B = cos(A + B) + cos(A − B ) 2 sin A sin B = − cos(A + B) + cos(A − B ) sin A + sin B = 2 sin 21 (A + B) cos 21(A − B) sin A − sin B = 2 cos 21(A + B) sin 21 (A − B) cos A + cos B = 2 cos 21(A + B) cos 21(A − B) cos A − cos B = −2 sin 21(A + B) sin 21 (A − B)

sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ sin2 θ = 21 (1 − cos 2θ ) cos2 θ = 21 (1 + cos 2θ )

t = tan θ/2 sin θ =

2t 1 + t2

cos θ =

1 − t2 1 + t2

tan θ =

2t 1 − t2

A B

C

a b

c

a2 = b2 + c2 − 2bc cos A b c a = = sin C sin A sin B

cosh θ = 21 (eθ + e−θ )

sinh θ = 21(eθ − e−θ )

eθ − e−θ sinh θ = θ cosh θ e + e−θ eθ + e−θ cosh θ 1 = θ coth θ = = tanh θ e − e−θ sinh θ 1 1 sech θ = cosech θ = sinh θ cosh θ tanh θ =

cosh2 θ − sinh2 θ = 1

sech2 θ + tanh2 θ = 1 coth2 θ − cosech2 θ = 1

ln (n!) ≈ n ln n − n

for n ≫ 1

ln n! ≈ n ln n − n + 12 ln (2π )

n−1 X

m=0

(a + md) = a + (a + d) + (a + 2d) + ... + (a + (n − 1)d)

Sn =

= (n/2) [2a + (n − 1)d] = ( /2)(

n−1 X

(ar m ) = a + ar + ar 2 + ....... + ar n−1 =

m=0

|r| < 1 S∞ =

a 1−r

)

a(1 − r n ) a(r n − 1) = 1−r r−1

(1 + x)n = 1 + nx +

n(n − 1) · · · (n − r + 1) r n(n − 1) 2 x + .... + x + ... 2! r!

0! = 1 |x| < 1  x n n n (a + x) = a 1 + a

f (x)

f (x) =

x=a ∞ X 1 n=0

n!

(x−a)n f (n) (a) = f (a)+(x−a)f ′ (a)+

(x − a)3 ′′′ (x − a)2 ′′ f (a)+ · · · f (a)+ 3! 2!

  ∂f 1 ∂ 2f ∂ 2f ∂ 2f ∂f 2 2 ∆x + ∆y + ∆x + 2 ∆x∆y + 2 ∆y + · · · f (x, y) = f (x0 , y0 ) + ∂x ∂y ∂y 2! ∂x2 ∂x∂y ∆x = x − x0 , ∆y = y − y0 (x0 , y0 ).

x2 x3 + ··· + 3! 2! x2 x3 x4 − + + ··· ln (1 + x) = x − |x| < 1 3 2 4 x3 x5 x7 − + + ··· sin x = x − 5! 3! 7! x6 x2 x4 − + + ··· cos x = 1 − 4! 2! 6! x3 x5 x7 + ··· sinh x = x + + + 7! 5! 3! x6 x2 x4 + + + ··· cosh x = 1 + 4! 2! 6! 1 = 1 − x + x2 − x3 + · · · |x| < 1. 1+x 1 = 1 + x + x2 + x3 + · · · |x| < 1. 1−x

ex = 1 + x +

d d tan x = sec2 x cot x = − cosec2 x dx dx d d cosec x = − cosec x cot x sec x = sec x tan x dx dx f (x) = u(x)v(x) df dv du v =u + dx dx dx u(x)

f (u) df df du = du dx dx

df

f (x, y) df =

f (x, y)

x

∂f ∂f dx + dy ∂x ∂y

y

x(u)

y(u)

∂f dx ∂f dy df = + ∂x du ∂y du du

x dx = sin−1 2 a −x ˆ 1 x dx = tan−1 ( 2 2 a +x a a ( ˆ a+x 1 ln a−x = dx 2a = 1 ln x+a = 2 2 a −x 2a x−a ˆ



− cos−1

a2



(

)

) 1 a

x dx = sinh−1 a a2 + x2 ˆ x dx √ = cosh−1 2 2 a x −a ˆ √ √ 1 a2 − x2 dx = x a2 − x2 + 2 ˆ √ √ 1 x2 ± a2 dx = x x2 ± a2 ± 2

ˆ

x a

tanh−1 1 a

x a coth−1 ax

ln (x +



ln (x +



( |x| < a) ( |x| > a)

a2 + x2 ) x2 − a2 )

1 2 −1 x ( a sin a 2 √ 1 2 a ln (x + x2 ± a2 ) 2

)

ˆ

tan x dx

= − ln (cos x) = ln (sec x)

ˆ

cot xdx

= ln (sin x)

ˆ

sec x dx

ˆ

cosec x dx

x dx a ˆ x cos−1 dx a ˆ ax dx ˆ xn e−ax dx

  1 + sin x π  1 = ln (sec x + tan x) = ln tan + = ln 2 1 − sin x 2 4     1 1 − cos x x = ln = ln (cosec x − cot x) = ln tan 2 2 1 + cos x √ x = x sin−1 + a2 − x2 a x √ = x cos−1 − a2 − x2 a ax = ln a  n x nxn−1 n(n − 1)xn−2 −ax + ··· = −e + + a3 a2 a  n!x n! + n + n+1 (n a a a sin bx − b cos bx = eax a 2 + b2 a cos bx + b sin bx = eax a 2 + b2 sin ax x cos ax = − a a2

ˆ

sin−1

ˆ

eax sin bx dx

ˆ

eax cos bx dx

ˆ

x sin ax dx

ˆ

ln x dx

= x ln x − x

ˆ

sinh x dx

= cosh x

ˆ

tanh x dx

= ln(cosh x)

ˆ

ˆ

π 0

x



ˆ

cosh x dx = sinh x

dv u dx = uv − dx

π sin mx sin nx dx = δmn 2

ˆ

v

ˆ

du dx dx

π

cos mx cos nx dx = 0

π δmn 2

δmn δmn



( 1 = 0

1 xe dx = 2 α ˆ0 ∞ 6 x3 e−αx dx = 4 α r ˆ0 ∞ 1 π 2 e−αx dx = 2 α ˆ0 ∞ 1 2 xe−αx dx = 2α 0 r ˆ ∞ 1 π 2 −αx2 xe dx = 4 α3 ˆ0 ∞ 1 2 x3 e−αx dx = 2α2 r ˆ0 ∞ 3 π 4 −αx2 xe dx = 8 α5 0 √ ˆ y π 2 erf(y ) e−x dx = 2 0 ˆ

m=n m 6= n



2 α3 ˆ 0∞ n! xn e−αx dx = n+1 α r ˆ 0∞ π 2 e−αx dx = α ˆ −∞ ∞ 2 xe−αx dx = 0 −∞ r ˆ ∞ 1 π 2 −αx2 xe dx = 2 α3 −∞ ˆ ∞ 2 x3 e−αx dx = 0 −∞ r ˆ ∞ 3 π 4 −αx2 xe dx = 4 α5 −∞ r ˆ y √ 1 π 2 erf( α y) e−αx dx = 2 α 0 ˆ

−αx

x2 e−αx dx =

y0 , y1 , y2 · · · yn

ˆb a

ydx = h

y

0

2

+ y1 + y2 +

+

yn  2

y ˆb a

ydx =

h {y0 + 4(y1 + y3 + 3

f (x) = 0

+ yn−1 ) + 2(y2 + y4 +

+ yn−2 ) + yn }

xj

xj = xj−1 −

df ′ f (xj−1 ) where f = ′ dx f (xj−1 )

z = x + iy = r(cos θ + i sin θ) = reiθ z ∗ = x − iy = re−iθ p √ z |z| = x2 + y 2 = r = zz ∗ y z = tan−1 = θ x z + z∗ Re(z) = x = r cos θ = 2 z − z∗ z Im(z) = y = r sin θ = 2i z

z z

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ) eiθ

e±iθ = cos θ ± i sin θ 1 cos θ = (eiθ + e−iθ ) 2 1 sin θ = (eiθ − e−iθ ) 2i eiθ − e−iθ e2iθ − 1 1 − e−2iθ = 2iθ = i tan θ = iθ e +1 e + e−iθ 1 + e−2iθ

m

Yl =



(2l + 1) (l − m)! 4π (l + m)!

1/2

l+m  1 imφ d m e (− sin θ) (cos2 θ − 1)l 2l l! d(cos θ)

Ylm (θ, φ) = Plm (cos θ)√

1 imφ e , 2π

Plm(cos θ ) 1 = √ 4π r 3 cos θ Y10 = 4π r 3 sin θe±iφ Y1±1 = ∓ 8π

Y00

Γ(n) =

ˆ

Y20

Y2±2



t

n−1 −t

e dt =

0

ˆ

1 0

 5  2 cos2 θ − sin2 θ 16π r 15 =∓ cos θ sin θe±iφ 8π r 15 =∓ sin2 θe±2iφ 32π

=

Y2±1

r

 n−1 1 dt ln t

n>0 n Γ(n + 1) = nΓ(n) Γ(n)Γ(1 − n) = Γ(n + 1) = n!   √ 1 Γ = π 2

Jn (x) =

π sin nπ n

≥0 Γ(1) = 0! = 1

∞ X λ=0

 xn+2λ (−1)λ Γ(λ + 1)Γ(λ + n + 1) 2

 d  −n x Jn (x) = −x−n Jn+1 (x) dx ˆ 2π 1 exp (ix cos φ) dφ J0 (x) = 2π 0

d {xn Jn (x)} = xn Jn−1 (x) dx ˆ z 1 xJ0 (x)dx zJ1 (z) = 2π 0

   A11 A12 A13 ... A1n     A21 A22 A23 ... A2n    |A| =  A31 A32 A33 ... A3n   ... ... ... ... ...    An1 An2 An3 ... Ann  X X = (−1)k+j Akj Mkj = (−1)k+i AikMik j

Mij

Aij i

(−1)i+j Mij A

i

A

(n − 1) × (n − 1) Aij

j Aij

|A| |A| |A| |A| = 0 |A| = 0 |A| λ |A|

λ |AB| = |A| |B | n×n

a an n

n

A11 x1 + A12x2 + A13 x3 + ...... + A1n xn = 0 A21 x1 + A22x2 + A23 x3 + ...... + A2n xn = 0 ···

An1 x1 + An2 x2 + An3 x3 + ...... + Ann xn = 0

         

n

A11 A21 A31 ... An1

A12 A22 A32 ... An2

A13 A23 A33 ... An3

... ... ... ... ...

A1n A2n A3n ... Ann

     =0    

n

A11 x1 + A12x2 + A13 x3 + ...... + A1n xn + C1 = 0 A21 x1 + A22x2 + A23 x3 + ...... + A2n xn + C2 = 0 ....... An1 x1 + An2 x2 + An3 x3 + ...... + Ann xn + Cn = 0

x1        

A12 A13 A22 A23 ... ... An2 An3

−x2 =   A11 A13 ... ... C1    A21 A23 ...  ... C2    ... .... ...  .....    An1 An3 ... ... Cn 

C1 C2 .... Cn

 = ..... =       

       

A11 A21 ... An1

(−1)n A12 ... A1n A22 ... A2n ... ... ... An2 ... Ann

y1 = A11 x1 + A12x2 + A13 x3 + ...... + A1n xn y2 = A21 x1 + A22x2 + A23 x3 + ...... + A2n xn ....... yn = An1 x1 + An2 x2 + An3 x3 + ...... + Ann xn



A11 y1  A21  y2       ...  =  A31  ... yn An1 

x

y



A

A12 A22 A32 ... An2 n

A13 A23 A33 ... An3 n

... ... ... ... ...

A1n A2n A3n ... Ann



   x1   x2      ...   xn

       

A

B (A + B)ij = Aij + Bij (λA)ij = λAij X (AB)ij = Ail Blj l

AB 6= BA.

Tr(A) =

X

Aii

i

Tr(AB) = Tr(BA)

AT

A

ATij = Aji A

A†

∗ A†ij = Aji

A−1

A

AA−1 = A−1 A = I

I

A−1 (A−1 )ij = (−1)i+j Mij

(−1)j+i Mji |A| Aij

(ABC..X)−1 = X −1 ...B −1 A−1

A = AT T

A = −A

A

AT = A−1 AT A = I

±1

A = A†

n

n

A† = A−1

n×n

x

A

n

λ

Ax = λx x

A |A − λI| = 0. n n

n

B = Q−1 AQ

A TrB = TrA |B| = |A|

Q

A

Q−1 AQ

A R 3×3

R

θ

= 1

TrR = 1 + 2 cos θ u

Ru = u

Ox Oy

Oz

a · b = |a||b| cos θ (with 0 ≤ θ ≤ π) where θ is the angle between a and b.

i · i = j · j = k · k = 1. i · j = i · k = j · k = 0. a·b = 0

a

b

a

b

a = ax i + ay j + az k

b = bx i + by j + bz k

a · b = a x bx + a y by + a z bz a · a = |a|2 = ax2 + ay2 + a2z a = (a · i)i + (a · j)j + (a · k)k

n a × b = |a||b| sin θˆ ˆn ˆn

0≤θ≤π

θ

i×i= j×j = k×k = 0 i × j = k,

j × k = i,

k×i= j

a × b = −b × a a = ax i + ay j + az k

b = bx i + by j + bz k

   a × b =  

 i j k  ax ay az  bx by bz 

a × b = |a||b| sin θ θ a×b = 0

[a b c] = a · (b × c) which also equals (a × b) · c [a b c] = [b c a] = [c a b] = − [a c b] = − [b a c] = − [c b a] a b

[a b c] = 0.

c

a b

c

[a b c]

a × (b × c) = (a · c)b − (a · b)c a × (b × c) 6= (a × b) × c ∇ ∇=i

∂ ∂ ∂ +j +k . ∂z ∂x ∂y φ(x, y, z)

grad φ = ∇φ = i

∂φ ∂φ ∂φ +j +k . ∂z ∂x ∂y

∇φ φ F(x, y, z) = Fx i + Fy j + Fz k ∂Fx ∂Fy ∂Fz + + ∂z ∂y ∂x ∂F ∂F ∂F +j· +k· div F = i · ∂z ∂x ∂y

div F = ∇ · F =

F(x, y, z) = Fx i + Fy j + Fz k

curl F = ∇ × F = i



∂Fz ∂Fy − ∂z ∂y



+j



∂Fx ∂Fz − ∂x ∂z



+k



∂Fy ∂Fx − ∂y ∂x

  i j k ∂F ∂F  ∂ ∂F ∂ ∂ +j× +k× =  ∂x ∂y curl F = i × ∂z ∂x ∂y ∂z  Fx Fy Fz

div grad φ = ∇ · (∇φ) = ∇2 φ =

     

∂ 2φ ∂ 2φ ∂ 2φ + + ∂x2 ∂y 2 ∂z 2

∇2

div curl F = ∇ · (∇ × F) = [ ∇ ∇ F] = 0. curl grad φ = ∇ × (∇φ) = 0 curl curl F = ∇ × (∇ × F) = ∇(∇ · F) − ∇2 F = grad divF − ∇2 F ∇2 F =

∂ 2F ∂ 2F ∂ 2F + 2 + 2 ∂x2 ∂y ∂z ∇

∇(φ + ψ) = ∇φ + ∇ψ ∇ · (a + b) = ∇ · a + ∇ · b ∇ × (a + b) = ∇ × a + ∇ × b ∇(φ ψ) = φ ∇ψ + ψ ∇φ ∇(a · b) = (b · ∇)a + (a · ∇)b + b × (∇ × a) + a × (∇ × b) ∇ · (φ a) = φ ∇ · a + (∇φ) a



.

∇ · (a × b) = b · ∇ × a − a · ∇ × b ∇ × (φ a) = φ ∇ × a + (∇φ) × a ∇ × (a × b) = (b · ∇)a − (a · ∇)b + a (∇ · b) − b (∇ · a)

V

S F(x, y, z) ‹ dS = ndS ˆ

S

F · dS =

˚

V

∇ · F dV

dS

S

C

n F(x, y, z) ˛ dr = i dx + j dy + k dz

C

F · dr =

¨

S

∇ × F · dS

dS = ndS ˆ

x = r cos φ, y = r sin φ, z = z r ≥ 0, 0 ≤ φ ≤ 2π, −∞ ≤ z ≤ ∞ r=

p

(x2 + y 2 ),

φ = tan−1 (y/x) ,

z=z

z=0

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π r= ∇2

p

(x2 + y 2 + z 2 ),

1∂ ∇ f= r ∂r 2

φ = tan−1 (y/x) ,

(r, φ, z)   ∂f 1 ∂ 2f ∂ 2f r + 2 2+ 2 ∂r ∂z r ∂φ

θ = cos−1 (z/r )

∇2

(r, θ, φ) 1 ∂ ∇ f= 2 r ∂r 2

    ∂ 2f 1 ∂f 1 ∂ 2 ∂f + 2 2 sin θ + 2 r ∂θ ∂r r sin θ ∂θ r sin θ ∂φ2

ds = |dr|

dV

p ds = (dr )2 + r 2 (dφ)2 + (dz )2 dV = r dr dφ dz

ds =

q

(dr )2 + r 2 (dθ)2 + r 2 sin2 θ(dφ)2

dV = r 2 sin θ dr dθ dφ

f (t)

t

∞ X

f (t) =

T

f (t + T ) = f (t)

Fn e−iωn t ,

n=−∞

where ωn = and Fn =

0

T

1 T

−T /2 1 T

2πn (n = 0, ±1, ±2.....∞) ˆT eiωn t f (t) dt

T

T /2 ˆ

e−iωn t eiωm t dt = δnm T

δnm f (t) f (t) = a0 +

∞ X

an cos ωn t + bn sin ωn t

n=1

ˆ 2 f (t) cos ωn t dt where an = T T ˆ 2 f (t) sin ωn t dt bn = T T ˆ 1 f (t) dt and a0 = T T

T → ∞ f (t) 1 f (t) = 2π

ˆ



F (ω)e−iωt dω −∞ ˆ ∞ f (t)eiωt dt where F (ω) = −∞

f (t)

F (ω) ˆ

∞ ′

−∞

e−iωt eiω t dt = 2πδ(ω − ω ′ )

f (t)

f (t − a)

a

F (ω ) is replaced by F (ω )eiωa ′

eiω t

f (t)

F (ω ) is ‘translated′ into F (ω + ω ′ )

f (t)

g(t)

t h(t)

h(t) = f (t) ∗ g(t) = =

ˆ



ˆ −∞ ∞

−∞

f (u)g(t − u)du f (t − u)g(u)du

h(t) H(ω) = F (ω)G(ω) f (t) g(t) H(ω ) = F (ω) ∗ G(ω )

1 f (t) = 2π

ˆ

F (ω )e

−∞

f (t) = e−iω0 t f (t) = sin ω0 t f (t) = cos ω0 t f (t) = δ(t − t0 )

G(ω)

h(t) = f (t)g(t)

∞ −iωt

F (ω)



F (ω ) =

ˆ



f (t)eiωt dt

−∞

F (ω) = 2πδ (ω − ω0 ) π F (ω) = [δ (ω + ω0 ) − δ (ω − ω0 )] i F (ω) = π [δ(ω + ω0 ) + δ(ω − ω0 )] F (ω) = eiωt0

f (t)



= T1 (|t| < T /2) = 0 (|t| ≥ T /2)

f (t) =

√1 2πτ

f (t) =

1 2τ

 2  exp − 2τt 2

  exp − τ|t|

F (ω) =

sin (ωT /2) ωT /2

  F (ω) = exp −ω 2 τ 2 /2

F (ν) = 1/(1 + ω 2 τ 2 )

e2πiSr cos φ ˆ 2π ˆ

a

φ=0 r=0

e2πiSr cos φ rdrdφ =

aJ1 (2πSa) S

J1 (x) = when |x| = 1.22π(= 3.3833), 2.233π (= 7.016), 3.238π(= 10.174), ... x = max. when |x| = 0, 2.679π(= 8.417), ... = min. when |x| = 1.635π(= 5.136), 3.699π (= 11.620), ...

F (s)

f (t) F (s) =

ˆ



f (t)e−st dt

0

Function f (t) c1 f1 (t) + c2 f2 (t) f (at) eat f (t) f (t) =



(t − a) t > a 0 t...


Similar Free PDFs