Formula sheet - Econometrics notes PDF

Title Formula sheet - Econometrics notes
Course literatura
Institution College SA
Pages 12
File Size 1.2 MB
File Type PDF
Total Downloads 85
Total Views 149

Summary

Econometrics notes...


Description

ECO 315: Econometrics Formula sheet Population and sample statistics Population

Sample _

E(X) = ∑Xf(x)

X

MEAN

X

i

/n _

2

2

( X  X) 2 S   i n 1 2 x

σ x = ∑(X-μ) f(x)

VARIANCE

σx

STANDARD DEVIATION

(X cov(X, Y)  

cov(X,Y) = ∑∑(X-μx)(Y-μy)f(x,y)

COVARIANCE

ρ = cov(X,Y)/σxσy

CORRELATION COEFFICIENT

3

S = E(X-μx) / σ

3

x

4

2 2

K = E(X-μx) / [E(X-μx) ]

Sx _

i

_

 X)(Yi  Y) n 1

r = cov(X,Y)/SxyS _

 X) 3

SKEWNESS

 (X S

KURTOSIS

 (X K

 X)4

i

n 1 _

i

n 1

Normal distribution If Xi ~ N(μ,σ2), then Xi can be converted into Zi ~ N(0,1) using Zi = (Xi – μ)/σ OLS formulas: Simple regression _

_

b1  Y b 2 X _

b2

_

 ( X  X )( Y  Y )   (X  X) i

i

_

2

i

_

var(b 1)   X i2  2 /[n  (X i  X ) 2 ] _

2 var(b 2 )   2 /  (X i  X )

se(b 1 )  var(b 1 ) se(b 2 )  var(b 2 )

^

Since σ2 is unknown, use  2   u i2 /( n  2)

Page 6 of 17

Hypothesis testing in simple regression

b1  1 ~ t df n 2 se(b 1 )

b 2  2 ~ t df n 2 se(b 2 )

Confidence intervals Limits:

b1 ± tαdf=n-2((se(b 1))

Limits:

b2 ± tαdf=n-2((se(b 2))

Analysis of variance TSS = ESS + RSS _

_

^

^

 (Y  Y)   (Y  Y)   (Y  Y ) 2

i

i

2

i

i

2

^

[Note that

 (Y  Y ) =  u i

i

2

2 i ]

Coefficient of determination in context of simple regression ^

r

_

(Y  Y )   (Y  Y )

2

i

2

_

 2

ESS TSS

i

Multiple regression t-ratios and confidence intervals are the same as in the simple regression case, but note that df = n-k, where k is the number of parameters. ^

^

ESS  2  yi x 2i   3  y ix 3i = 1 – (RSS/TSS) R   TSS  y i2 2

^

_

R

2

 u /(n  k ) 1   y /(n  1) 2 i

2 i

OLS formulas: Multiple regression ^

^

^

^

minu2i  (Yi  1 2 X2i 3 X3i) 2 ^

_

^

_

^

_

1  Y  2 X 2 3 X3 ^

2 

( yi x2 i )( x32i )  ( y ix 3i )( x 2i x 3i ) ( x22i )( x23i )  ( x 2ix 3i )2

Page 7 of 17

^

3 

( yi x3i )(  x 22i )  ( yi x 2 i )(  x 2i x 3i ) ( x22i )( x23i )  ( x 2i x 3i ) 2

_  2 1 X2  var(  1 )    n  



^

x

^

var( 2 ) 

2 3i

(  x )(  x )  (  x 2 i x 3i ) 2 2i

2 3i

2

where  2 

2 2i

(  x )(  x )  (  x 2 i x 3i ) 2 2i

2 3i

2 ^

x

^

var(  3 ) 

_ _ _  2 x3 i  X 23  x 22 i  2 X 2 X 3  x 2 i x 3 i  2  .  x 22 i  x 23i  (  x 2i x 3i ) 2  

2





^

u 2i

n3

2

Multiple regression: Hypothesis testing for overall significance ANOVA approach: F 

In terms of R2: F 

ESS /( k  1) RSS /( n  k )

R2 /(k  1) (1 R2 ) /(n  k )

Marginal contribution of an explanatory variable F test: F 

(ESSnew - ESSold ) / number of new regres sors RSSnew / df (  n  number of parameters in the new model)

Using R2: F 

(R2new - R2old ) / number of new regres sors (1 - R2new ) / df (  n  number of parameters in the new model)

Multiple regression: Hypothesis testing for equality of two coefficients ^

t

^

3 4 ^

^

^

^

var(  3 )  var(  4 )  2 cov(  3 ,  4 )

Page 8 of 17

Multiple regression: Hypothesis testing of linear equality restrictions ^

^

(2  3 )  (2  3 )

The t-test approach: t 

^

^

^

^

var( 2 )  var(3 )  2 cov(2 , 3)

F-test approach: F 

( RSS R  RSS UR ) / m RSS UR /( n  k )

or in terms of R 2: F 

(R 2UR  R 2R ) / m (1 R2UR ) /(n  k )

The Chow test

F

( RSS R  RSS UR ) / k ~ F( k ,( n1  n2  2 k ) ( RSS UR ) /( n1  n 2  2 k )

Testing whether error variances of two sub-sample regressions are the same:

RSS1 And ^2 RSS 2 2    n1  k n2  k ^

2 1

^

Then: F 

 12 ^



2 2

Multicollinearity: Variance Inflation Factor: 1 VIF  (1  r 223 ) ^

var( j) 

2 VIF  x2j

Auxiliary Regressions:

Fi 

R2xi .x2 x3 ...xk /(k  2) (1  R 2xi .x2 x3 ...xk ) /(n  k  1)

Heteroscedasticity: Spearman Rank Correlation Test:

  d 2i  rs  1  6   2  n ( n  1)  t

rs n  2 1  rs2

Page 9 of 17

Goldfelt-Quandt test:

 F

RSS2 / df RSS 1 / df

where df = [(n-c)/2] – k in the numerator and denominator

Breusch-Pagan-Godfrey test: ^ 2

~ 2

  ui / n ^

~ 2

pi  u i /  2



1 (ESS ) 2

Autocorrelation: Durbin-Watson statistic: t n

d

^

^

t n

^ 2 t

 ( u t  u t 1 ) 2 t 2

u t 1

^

d  2 (1  ) Model Specification and Diagnostic Testing: Ramsey RESET test:

(R 2new - R 2old ) / number of new regressors F 2 (1 - Rnew ) / df (  n  number of parameters in the new model)

Page 10 of 17

Page 11 of 17

Page 12 of 17

Page 13 of 17

Page 14 of 17

Page 15 of 17

Eco315 June 2019

Eco315 June 2019

Page 17 of 17...


Similar Free PDFs