Formula Sheet for Actuarial Mathematics PDF

Title Formula Sheet for Actuarial Mathematics
Author Nallalingam Manoharan
Course Financial accounting theory
Institution Cambridge College
Pages 34
File Size 568.8 KB
File Type PDF
Total Downloads 24
Total Views 157

Summary

Formula Sheet for Actuarial Mathematics...


Description

1 Lesson 1 - Probability Review 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.8 1.9 1.10 1.11 1.12 1.13

𝜇2 = 𝜇′2 − 𝜇 2 𝜇3 = 𝜇′3 − 3𝜇2′ 𝜇 − 2𝜇 3 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋 2 ] − 𝐸[𝑋]2 𝑉𝑎𝑟(𝑎𝑋 + 𝑏𝑌) = 𝑎2 𝑉𝑎𝑟(𝑋) + 2𝑎𝑏𝐶𝑜𝑣 (𝑋, 𝑌) + 𝑏 2 𝑉𝑎𝑟(𝑌) 𝑉𝑎𝑟(∑𝑛𝑖=1 𝑋𝑖) = 𝑛𝑉𝑎𝑟(𝑋) ∑𝑛 𝑋 𝑛𝑉𝑎𝑟(𝑋) 𝑉𝑎𝑟(𝑥) = 𝑉𝑎𝑟(𝑋 ) = 𝑉𝑎𝑟 ( 𝑖=1 𝑖) = 2 𝑛

Bayes Theorem Pr(𝐵 |𝐴)Pr(𝐴) Pr(𝐴|𝐵) =

𝑓𝑥 (𝑥|𝑦) =

𝑛

𝑛

Pr(𝐵)

𝑓𝑦( 𝑦|𝑥 )𝑓𝑥 (𝑥) 𝑓𝑦(𝑦)

Law of Total Probability (Discrete) Pr(𝐴) = ∑𝑖 Pr(𝐴 ∩ 𝐵𝑖 ) =∑ 𝑖 Pr(𝐵𝑖 )Pr(𝐴|𝐵𝑖 ) Law of Total Probability (Continuous) Pr(𝐴) = ∫ Pr(𝐴|𝑥) 𝑓(𝑥)𝑑𝑥 Conditional Mean Formula 𝐸𝑋 [𝑋] = 𝐸𝑌 [𝐸𝑋 [𝑋|𝑌]] Double Expectation Formula 𝐸𝑋 [𝑔(𝑋)] = 𝐸𝑌 [𝐸𝑋 [𝑔(𝑋 )|𝑌]] Conditional Variance Formula

Lesson 2 – Survival Distributions: Probability Functions

2.1 𝑆𝑥+𝑡 (𝑢) =

2.2 𝑆𝑥 (𝑡)

𝑆𝑥 (𝑡+𝑢 ) 𝑆𝑥 (𝑡) 𝑆0(𝑥+𝑡 ) = 𝑆 (𝑥) 0 𝐹0(𝑥+𝑡 )−𝐹0 (𝑥)

2.3 𝐹𝑥 (𝑡) =

2.4 2.5

𝑡|𝑢 𝑞𝑥

𝑡|𝑢 𝑞𝑥

1−𝐹0 (𝑥)

= 𝑡 𝑝𝑥 − 𝑡+𝑢 𝑝𝑥

= 𝑡+𝑢 𝑞𝑥 − 𝑡 𝑞𝑥

Life Table Functions 𝑡 𝑝𝑥

𝑡 𝑞𝑥

=

𝑡|𝑢 𝑞𝑥

=

𝑡+𝑢 𝑝𝑥

𝑙𝑥+𝑡

=

𝑙𝑥

𝑡 𝑑𝑥

𝑙𝑥

=

𝑢𝑑𝑥+𝑡

𝑙𝑥

𝑙𝑥 −𝑙𝑥+𝑡

=

𝑙𝑥

𝑙𝑥+𝑡−𝑙𝑥+𝑡+𝑢 𝑙𝑥

= 𝑡 𝑝𝑥 𝑢 𝑝𝑥+𝑡

𝑉𝑎𝑟𝑋 (𝑋) = 𝐸𝑌 [𝑉𝑎𝑟𝑋 (𝑋|𝑌)] + 𝑉𝑎𝑟𝑌 (𝐸𝑋 [𝑋|𝑌])

Distribution Bernoulli Binomial Uniform Exponential

Mean 𝑞 𝑚𝑞 𝑎+𝑏 2

𝜃

Variance 𝑞(1 − 𝑞) 𝑚𝑞(1 − 𝑞)

(𝑏−𝑎) 2 12

𝜃2

Bernoulli Shortcut: If a random variable can only assume two values 𝑎 and 𝑏 with prob 𝑞 and 1 − 𝑞 , then 𝑉𝑎𝑟(𝑋) = 𝑞 (1 − 𝑞 )(𝑏 − 𝑎)2

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Formula Summary of ASM 2014

2 3.1 𝜇𝑥+𝑡 =

𝑓𝑥 (𝑡 ) 𝑆𝑥 (𝑡)

Lesson 3 – Survival Distributions: Force of Mortality

3.2 𝜇𝑥+𝑡 =

𝑑 𝑞 𝑑𝑡 𝑡 𝑥

3.3 𝜇𝑥+𝑡 = −

3.4 𝜇𝑥+𝑡 = −

𝑡𝑝𝑥

𝑑 ln(𝑆𝑥 (𝑡 ))

4.2

𝑑𝑡 𝑑 ln( 𝑡𝑝𝑥 ) 𝑑𝑡

Lesson 4 – Survival Distribution: Mortality 4.1 Gompertz’ Law 𝜇𝑥 = 𝐵𝑐 𝑥 𝑐>1

3.5 𝑆𝑥 (𝑡) = exp(− ∫ 𝜇𝑥+𝑠 𝑑𝑠) 0 𝑡

3.7 𝑡 𝑝𝑥 = exp(− ∫𝑥 𝜇𝑠 𝑑𝑠) 3.8 𝑓𝑥 (𝑡) = 𝑆𝑥 (𝑡)𝜇𝑥+𝑡 = 𝑡 𝑝𝑥 𝜇𝑥+𝑡 𝑡+𝑢 3.9 𝑃(𝑡 < 𝑇𝑥 < 𝑡 + 𝑢) = 𝑡|𝑢 𝑞𝑥 = ∫𝑡 𝑠 𝑝𝑥 𝜇𝑥+𝑠 𝑑𝑠 𝑥+𝑡

𝑡 𝑞𝑥

= ∫0 𝑠 𝑝𝑥 𝜇𝑥+𝑠 𝑑𝑠 −𝑘𝑡 If 𝜇′𝑥+𝑠 = 𝜇𝑥+𝑠 + 𝑘 for 0 ≤ 𝑠 ≤ 𝑡 then 𝑡𝑝𝑥′ = 𝑝 . 𝑡 𝑥𝑒 If 𝜇𝑥+𝑠 = 𝜇 𝑥+𝑠 + 𝜇𝑥+𝑠 for 0 ≤ 𝑠 ≤ 𝑡 then 𝑡 𝑝𝑥 = 𝑡 𝑝𝑥 𝑡 𝑝𝑥 3.10

𝑡

If 𝜇′𝑥+𝑠 = 𝑘𝜇𝑥+𝑠 for 0 ≤ 𝑠 ≤ 𝑡 then 𝑡𝑝𝑥′ = ( 𝑡 𝑝𝑥)

= exp(−

𝑡 𝑝𝑥

= exp(−𝐴𝑡 −

𝐵𝑐 𝑥 (𝑐 𝑡−1) ln(𝑐)

𝑘

4.4

)

𝜇𝑥 = 𝐴 + 𝐵𝑐 𝑥 𝑐>1 A is constant part of force of mortality *Adding A to 𝜇 multiplies 𝑡 𝑝𝑥 by e−μt

4.3 Makeham’s Law

3.6 𝑡 𝑝𝑥 = exp(− ∫0 𝜇𝑥+𝑠 𝑑𝑠) 𝑡

𝑡 𝑝𝑥

𝐵𝑐 𝑥 (𝑐 𝑡−1) ln(𝑐)

)

𝜇𝑥 = 𝑘𝑥 𝑛 𝑘𝑥 (𝑛+1) ) 0𝑝𝑥 = exp(− 𝑛+1 Constant Force of Mortality 4.5 𝜇𝑥 = 𝜇 4.6 𝑡 𝑝𝑥 = e −μt 4.7 (BLANK) Weibull Distribution

Uniform Distribution 1 4.8 𝜇𝑥 = 0≤𝑥 ≤𝜔

4.9

𝑡 𝑝𝑥

𝜔−𝑥 𝜔−𝑥−𝑡

=

𝑡 𝑞𝑥

𝜔−𝑥 𝑡

0≤𝑡≤𝜔−𝑥

= 𝜔−𝑥 0 ≤ 𝑡 ≤ 𝜔 − 𝑥

4.11 𝑡|𝑢 𝑞𝑥 = 0≤𝑡+𝑢 ≤𝜔−𝑥 𝜔−𝑥 4.12 (BLANK)

4.10

𝑢

Beta Distribution 𝛼 4.13 𝜇𝑥 = 𝜔−𝑥 0 ≤ 𝑥 ≤ 𝜔 4.14

𝑡 𝑝𝑥

=(

𝜔−𝑥−𝑡 𝛼 𝜔−𝑥

) 0≤𝑡≤𝜔−𝑥

*The force of mortality is the sum of two uniform forces. 𝑡 𝑝𝑥 is the product of uniform probabilities

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Formula Summary of ASM 2014

3 Lesson 5 – Survival Distributions: Moments Complete Future Lifetime ∞ 5.1 𝑒󰇗𝑥 = ∫ 𝑡 𝑡 𝑝𝑥𝜇𝑥+𝑡 𝑑𝑡 0 ∞ 5.2 𝑒󰇗𝑥 = ∫0 𝑡 𝑝𝑥 𝑑𝑡

5.3 𝐸[𝑇𝑥2 ] = 2 ∫0 𝑡 𝑡 𝑝𝑥 𝑑𝑡 ∞ 5.4 𝑉𝑎𝑟(𝑇𝑥 ) = 2 ∫ 𝑡 𝑡 𝑝𝑥 𝑑𝑡 − 𝑒󰇗𝑥2 0 5.5 𝑒󰇗𝑥:𝑛|  = 𝐸[min(𝑇𝑥 , 𝑛 )] 𝑛 𝑒󰇗𝑥:𝑛|  = ∫ 𝑡 𝑡 𝑝𝑥 𝜇𝑥+𝑡 𝑑𝑡 + 𝑛 𝑛 𝑝𝑥 0 𝑛 5.6 𝑒󰇗𝑥:𝑛|  = ∫ 𝑡 𝑝𝑥 𝑑𝑡 0 ∞

5.7 𝐸[min(𝑇𝑥 , 𝑛)2 ] = 2 ∫0 𝑡 𝑡 𝑝𝑥 𝑑𝑡 𝑛

5.20 𝑒𝑥 = ∑𝑘=1 e−μk = e (CFM) 1−e−μ 5.21 𝑒󰇗𝑥 = 𝑒𝑥 + 0.5 (UDD) 5.22 𝑒󰇗𝑥:𝑛|  = 𝑒𝑥:𝑛|  + 0.5 𝑛 𝑞𝑥 (UDD) ∞

−μ

*For those surviving n years, min(𝑇𝑥 , 𝑛) = 𝑛 𝑛 *For those not surviving n years, average future lifetime is 2 , since future lifetime is uniform. * 𝑒𝑥 = 𝐸[min(𝐾𝑥 , 𝑛)] * 𝑒󰇗𝑥 = 𝐸[𝑇𝑥 ] *If curtate,𝑒𝑥+𝑠:𝑎+𝑏| , 𝑏 < 1, 𝑠 < 1, 𝑎𝜖Ƶ is the same as 𝑒𝑥+𝑠:𝑎| 

Special Mortality Laws 𝜔−𝑥 5.8 𝑒󰇗𝑥 = 𝐸[𝑇𝑥 ] = 𝛼+1 (Beta) 𝑒󰇗𝑥 = 𝐸 [𝑇𝑥 ] =

𝑒󰇗𝑥 = 𝐸 [𝑇𝑥 ] =

𝜔−𝑥 1

2

(UDD)

𝜇 𝛼(𝜔−𝑥) 2

(CFM)

5.9 𝑉𝑎𝑟(𝑇𝑥 ) = (𝛼+1)2(𝛼+2) (Beta) 𝑉𝑎𝑟(𝑇𝑥 ) =

𝑉𝑎𝑟(𝑇𝑥 ) =

(𝜔−𝑥 )2 1

𝜇2

12

(UDD)

(CFM)

5.10 𝑒󰇗𝑥:𝑛|  = 𝑛 𝑝𝑥 (𝑛) + 𝑛 𝑞𝑥 ( ) (UDD) 2 𝑛

𝑒󰇗𝑥:𝑛| (𝑛) +  = 𝜔−𝑥 5.11 𝑒󰇗𝑥:1|  = 𝑝𝑥 + 0.5𝑞𝑥 (UDD) 𝜔−𝑥−𝑛

𝑛 𝑛 ( ) 𝜔−𝑥 2

(UDD)

Curtate Future Lifetime 5.12 𝑒𝑥 = ∑ ∞ 𝑘=0 𝑘 𝑘| 𝑞𝑥 𝑛−1 5.13 𝑒𝑥:𝑛|  = ∑ 𝑘=0 𝑘 𝑘| 𝑞𝑥 + 𝑛 𝑛 𝑝𝑥 2 2 5.14 𝐸[𝐾𝑥 ] = ∑ ∞ 𝑘=0 𝑘 𝑘|𝑞𝑥 2 2 2 5.15 𝐸[min(𝐾𝑥 , 𝑛) ] = ∑ 𝑛−1 𝑘=0 𝑘 𝑘| 𝑞𝑥 + 𝑛 𝑛 𝑝𝑥 5.16 𝑒𝑥 = ∑ ∞ 𝑝 𝑘=1 𝑘 𝑥 𝑛 5.17 𝑒𝑥:𝑛|  = ∑ 𝑘=1 𝑘 𝑝𝑥 2 5.18 𝐸[𝐾𝑥 ] = ∑ ∞ 𝑘=1(2𝑘 − 1) 𝑘 𝑝𝑥 5.19 𝐸[min(𝐾𝑥 , 𝑛)2 ] = ∑ 𝑛𝑘=1(2𝑘 − 1) 𝑘 𝑝𝑥

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Formula Summary of ASM 2014

4 Lesson 6 – Survival Distributions: Percentiles and Recursions 6.1 𝑒󰇗𝑥 = 𝑒󰇗 𝑥:𝑛|  + 𝑛 𝑝𝑥 𝑒󰇗 𝑥+𝑛 6.2 𝑒𝑥 = 𝑒𝑥:𝑛|  + 𝑛 𝑝𝑥 𝑒𝑥+𝑛 6.3 𝑒𝑥 = 𝑒𝑥:𝑛−1|  + 𝑛 𝑝𝑥 (1 + 𝑒𝑥+𝑛 ) 6.4 𝑒𝑥 = 𝑝𝑥 + 𝑝𝑥 𝑒𝑥+1 = 𝑝𝑥 (1 + 𝑒𝑥+1 )𝑛 = 1 6.5 𝑒𝑥:𝑛|  = 𝑒𝑥:𝑚|  + 𝑚 𝑝𝑥𝑒𝑥+𝑚:𝑛−𝑚|  𝑚 < 𝑛 6.6 𝑒𝑥:𝑛|  = 𝑒𝑥:𝑚−1|  + 𝑚 𝑝𝑥(1 + 𝑒𝑥+𝑚:𝑛−𝑚|  )𝑚 < 𝑛  = 𝑝𝑥 + 𝑝𝑥 𝑒𝑥+1:𝑛−1|  = 𝑝𝑥 (1 + 𝑒𝑥+1:𝑛−1| ) 6.7 𝑒𝑥:𝑛|

Lesson 7 – Survival Distributions: Fractional Ages Uniform Distribution of Deaths 7.1 𝑙𝑥+𝑠 = (1 − 𝑠)𝑙𝑥 + 𝑠𝑙𝑥+1 = 𝑙𝑥 − 𝑠𝑑𝑥 7.2 𝑠 𝑞𝑥 = 𝑠𝑞𝑥 𝑠𝑞 𝑠𝑑𝑥 𝑙 7.3 𝑠 𝑞𝑥+𝑡 = 𝑥 = = 1 − ( 𝑥+𝑠+𝑡 ) , 0 ≤ 𝑠 + 𝑡 ≤ 1 1−𝑡𝑞𝑥

𝑙𝑥 −𝑡𝑑𝑥

7.4 𝑠 𝑝𝑥 𝜇𝑥+𝑠 = 𝑞𝑥 𝑞𝑥 𝑞 7.5 𝜇𝑥+𝑠 = 𝑥 = 1−𝑠𝑞 𝑠 𝑝𝑥

𝑙𝑥+𝑡

𝑥

7.6 𝑒󰇗𝑥 = 𝑒𝑥 + 2 (UDD) Recall: 5.11 (𝑒󰇗𝑥:1|  = 𝑝𝑥 + 0.5𝑞𝑥 ) 7.7 𝑒󰇗𝑥:𝑛|  = 𝑒𝑥:𝑛|  + 0.5 𝑛 𝑞𝑥 1

Constant Force of Mortality 7.8 𝑝𝑥 = 𝑒 −𝜇 7.9 𝜇 = −ln(𝑝𝑥 ) 7.10 𝑠 𝑝𝑥 = 𝑒 −𝜇𝑠 = (𝑝𝑥 ) 𝑠 7.11 𝑠 𝑝𝑥+𝑡 = (𝑝𝑥 ) 𝑠 0 ≤ 𝑡 ≤ 1 − 𝑠

Table 7.1: Summary of Formulas for Fractional Ages UDD CFM 𝑙𝑥+𝑠 𝑙𝑥 − 𝑠𝑑𝑥 𝑙𝑥 𝑝𝑥𝑠 𝑠𝑞 1 − 𝑝𝑥𝑠 𝑥 𝑠 𝑞𝑥 1 − 𝑠𝑞 𝑝𝑥𝑠 𝑝 𝑥 𝑠 𝑥 𝑠𝑞 𝑥 1 − 𝑝𝑥𝑠 𝑠 𝑞𝑥+𝑡 1 − 𝑡𝑞𝑥 𝑞𝑥 − ln(𝑝𝑥 ) 𝜇𝑥+𝑠 1 − 𝑠𝑞𝑥 𝑞𝑥 −𝑝𝑥𝑠 ln(𝑝𝑥 ) 𝑠 𝑝𝑥 𝜇𝑥+𝑠 𝑒󰇗𝑥 𝑒𝑥 + 0.5 𝑒󰇗 𝑥:𝑛|  𝑒𝑥:𝑛|  + 0.5 𝑛 𝑞𝑥 𝑒󰇗 𝑥:1| 𝑝𝑥 + 0.5𝑞𝑥

Function



Monica E. Revadulla EXAM MLC – Models for Life Contingencies

𝑒󰇗 𝑥:𝑡| = 𝑒󰇗𝑥:𝑘|  + 𝑘 𝑝𝑥 𝑒󰇗 𝑥+𝑘:𝑡−𝑘| 

Formula Summary of ASM 2014

5 Lesson 8 – Survival Distributions: Select Mortality  A man whose health was established 5 years ago will have better mortality than a randomly selected man.  A life selected at age 𝑥 can never become a life selected at any higher age. [𝑥] will never become [𝑥 + 1].

Lesson 10 – Insurance: Annual and 1/mthly – Moments ∞ ∞ 10.1 𝐸[𝑍] = ∑𝑘=0 𝑏𝑘 𝑣 𝑘+1 𝑘|𝑞𝑥 = ∑ 𝑘=0 𝑏𝑘 𝑣 𝑘+1 𝑘𝑝𝑥 𝑞𝑥+𝑘 ∞ 2] 2 2 2(𝑘+1) 10.2 𝐸[𝑍 = ∑𝑘=0 𝑏𝑘 𝑣 2(𝑘+1) 𝑘| 𝑞𝑥 = ∑ ∞ 𝑘𝑝𝑥 𝑞𝑥+𝑘 𝑘=0 𝑏𝑘 𝑣

Table 10.1: Actuarial notation for standard types of insurance Name Present Value of RV Symbol Whole life 𝑣 𝐾𝑥 +1 𝐴𝑥 𝐴𝑥 :𝑛| Term life  𝑣 𝐾𝑥 +1 𝐾𝑥 < 𝑛 { 0𝐾𝑥 ≥ 𝑛 0𝐾𝑥 < 𝑛 Deferred life 𝑛| 𝐴𝑥 { 𝐾𝑥 +1 𝑣 𝐾𝑥 ≥ 𝑛 Deferred term 0𝐾𝑥 ≤ 𝑛  𝑛| 𝐴𝑥 :𝑚| {𝑣 𝐾𝑥 +1 𝑛 < 𝐾𝑥 < 𝑛 + 𝑚 𝐴 𝑛|𝑚 𝑥 0𝐾𝑥 ≥ 𝑛 + 𝑚 0𝐾𝑥 < 𝑛 Pure Endowment 𝐴𝑥:𝑛| 󰆷  { 𝑛 𝑣 𝐾𝑥 ≥ 𝑛 𝑣𝑡 𝑝 𝑣 𝐾𝑥 +1 𝐾𝑥 < 𝑛 𝑣 𝑛 𝐾𝑥 ≥ 𝑛 2 − (𝐴𝑥:𝑛| ) {

Endowment

10.3 𝑉𝑎𝑟(𝑍) = 2𝐴𝑥:𝑛|  10.4 2𝑖 = 2𝑖 + 𝑖 2 2 𝑑 = 2𝑑 − 𝑑 2 2 𝑣 = 𝑣2 10.5 𝑛|𝐴𝑥 = 𝑛 𝐸𝑥 𝐴𝑥+𝑛 10.6 𝐴𝑥 :𝑛|  = 𝐴𝑥 − 𝑛|𝐴𝑥 = 𝐴𝑥 − 𝑛 𝐸𝑥 𝐴𝑥+𝑛 10.7 𝐴𝑥:𝑛|  = 𝐴𝑥 :𝑛|  + 𝑛 𝐸𝑥 = 𝐴 𝑥 − 𝑛 𝐸𝑥 𝐴𝑥+𝑛 + 𝑛 𝐸𝑥 𝑞 10.8 𝐴𝑋 = (𝐶𝐹𝑀) 𝑞+𝑖

𝑉𝑎𝑟(𝑍) = 𝑞+2𝑖+𝑖 2 − (

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

𝑞

𝑞

𝑞+𝑖

)

2

𝑡 𝑥

𝐴𝑥:𝑛| 

(CFM)

Formula Summary of ASM 2014

6 Table 10.2: EPV for insurance payable at EOY of death Type of Insurance CFM UDD 𝑞 𝑎 Whole Life 𝜔−𝑥| 𝑞+𝑖 2 𝑞 𝑎  n-year term 𝑛| (1 − (𝑣𝑝)𝑛 ) 𝑞+𝑖 𝜔−𝑥 𝑞 𝑣 𝑛 𝑎𝜔−(𝑥+𝑛)| n-year deferred life   (𝑣𝑝)𝑛 𝑞+𝑖 𝜔−𝑥 (𝑣𝑝)𝑛 n-year pure endowment 𝑣 𝑛 (𝜔 − (𝑥 + 𝑛)) 𝜔−𝑥

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Lesson 11 – Insurance: Continuous – Moments – Part I ∞ 11.1 𝐸(𝑍) = 𝐴𝑥 = ∫0 𝑣 𝑡 𝑓𝑥 (𝑡)𝑑𝑡 ∞ −𝛿𝑡 11.2 𝐴𝑥 = ∫0 𝑒 𝑡 𝑝𝑥 𝜇𝑥+𝑡 𝑑𝑡 2 11.3 𝑉𝑎𝑟(𝑍) = 𝐸(𝑍 2 ) − (𝐸(𝑍)) = 2 𝐴𝑥 − (𝐴𝑥 )2 𝜇 ( ) −𝑛 𝜇+𝛿 11.4 𝑛|𝐴𝑥 = 𝑒 𝐴𝑥 =

𝜇

𝜇+𝛿

𝜇+𝛿

(𝐶𝐹𝑀)

𝐴𝑥+𝑛 = 𝐴𝑥 (𝐶𝐹𝑀 ) 11.5 𝐴𝑥 :𝑛|  = 𝐴𝑥 (1 − 𝑛 𝐸𝑥 ) = 

11.6

 𝑛| 𝐴𝑥 :𝑚|

11.8

𝑛| 𝐴𝑥

𝜇 (1 𝜇+𝛿

= 𝐴𝑥 ( 𝑛 𝐸𝑥 − 𝑚+𝑛 𝐸𝑥) =

− 𝑒 −𝑛(𝜇+𝛿) ) 𝜇𝑒 −𝑛(𝜇+𝛿) 𝜇+𝛿

𝜇 (1 − 𝑒 −𝑛(𝜇+𝛿) ) + 𝑒 −𝑛(𝜇+𝛿 ) 11.7 𝐴𝑥:𝑛|  = 𝜇+𝛿

(1 − 𝑒 −𝑚(𝜇+𝛿) )

 = 𝑛 𝐸𝑥 𝐴𝑥+𝑛 −𝑛(𝜇+𝛿 ) 𝐴𝑥:𝑛| 󰆷 = 𝑒

Formula Summary of ASM 2014

7 Lesson 12 – Continuous – Moments – Part II

Lesson 13 – Insurance: Probabilities and Percentiles

Table 12.1 EPV for insurance payable at moment of death Type of Insurance CFM UDD 𝜇 𝑎  Whole Life 𝜔−𝑥| 𝜇+𝛿 𝜔−𝑥 𝜇 𝑎𝑛| n-year term (1 − 𝑒 −𝑛(𝜇+𝛿) ) 𝜇+𝛿 𝜔−𝑥 𝜇 n-year deferred life 𝑒 −𝛿𝑛 𝑎𝜔−(𝑥+𝑛)|  𝑒 −𝑛(𝜇+𝛿) 𝜇+𝛿 𝜔−𝑥 n-year pure endowment 𝑒 −𝑛(𝜇+𝛿) 𝑒 −𝛿𝑛 (𝜔 − (𝑥 + 𝑛)) 12.1 12.2 12.3 12.4 12.5

∞ 𝑛! Gamma 𝐸𝑃𝑉 = ∫0 𝑡 𝑛 𝑒 −𝑐𝑡 𝑑𝑡 = 𝑐 𝑛 +1 ∞ 1 If n=1, 𝐸𝑃𝑉 = ∫0 𝑡𝑒 −𝑐𝑡 𝑑𝑡 = 2 𝑐 ∞ 2 If n=2, 𝐸𝑃𝑉 = ∫0 𝑡 2 𝑒 −𝑐𝑡 𝑑𝑡 = 3 𝑐 𝑢 1 ∫0 𝑡𝑒 −𝑐𝑡 𝑑𝑡 = 2 (1 − (1 + 𝑐𝑢)𝑒 −𝑐𝑢 ) 𝑐 𝑢 (𝑎𝑢| −𝑢𝑣 ) (𝐼𝑎 ) 𝑢| = 𝛿

𝜔−𝑥

To calculate Pr(𝑍 ≤ 𝑧) for continuous 𝑍, draw a graph of 𝑍 as a function of 𝑇𝑥 . Identify the parts of the graph that are below the horizontal line 𝑍 = 𝑧, and the corresponding 𝑡’s. Then calculate the probability of 𝑇𝑥 being in the range of those 𝑡’s. For CFM, Pr(𝑍 ≤ 𝑧) = 𝑧 𝛿

𝜇

For discrete 𝑍 , identify 𝑇𝑥 and then identify 𝐾𝑥 + 1 corresponding to that 𝑇𝑥 .

To calculate percentiles of continuous 𝑍 , draw a graph of 𝑍 as a function of 𝑇𝑥 . Identify where the lower parts of the graph are, and how they vary as a function of 𝑇. For example, for whole life, higher 𝑇 leads to lower 𝑍 . For 𝑛year deferred whole life, both 𝑇𝑥 < 𝑛 and higher 𝑇𝑥 lead to lower 𝑍 . Write an equation for the probability 𝑍 is less than 𝑧 in terms of mortality probabilities expressed in terms of 𝑡 . Set it equal to the desired percentile, and solve for 𝑡 or for 𝑒 𝑘𝑡 for any 𝑘. Then solve for 𝑧 (which is often 𝑣 𝑡 )

Variance If 𝑍3 = 𝑍1 + 𝑍2 , 𝑍1 &𝑍2 are mutually exclusive, 𝑉𝑎𝑟(𝑍3 ) = 𝑉𝑎𝑟(𝑍1 ) + 𝑉𝑎𝑟(𝑍2 ) − 2𝐸(𝑍1 )𝐸(𝑍2 )

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Formula Summary of ASM 2014

8 Lesson 14 – Insurance: Recursive Formulas, Varying Insurance Recursive Formulas 14.1 𝐴𝑥 = 𝑣𝑞𝑥 + 𝑣𝑝𝑥 𝐴𝑥+1 14.2 𝐴𝑥:𝑛|  = 𝑣𝑞𝑥 + 𝑣𝑝𝑥 𝐴𝑥+1:𝑛−1|  14.3 𝐴𝑥 :𝑛| 󰆷 :𝑛−1|  = 𝑣𝑞𝑥 + 𝑣𝑝𝑥 𝐴𝑥+1  14.4 𝑛| 𝐴𝑥 = 𝑣𝑝𝑥 𝑛−1|𝐴𝑥+1

Applying whole life recursive equation twice: 𝐴𝑥 = 𝑣𝑞𝑥 + 𝑣 2 𝑝𝑥 𝑞𝑥+1 + 𝑣 2 2𝑝𝑥 𝐴𝑥+2   )𝑥 = 𝜇 14.5 (𝐼𝐴 (𝜇+𝛿) 2

14.6 Continuously whole life insurance (CFM) 2𝜇 𝐸(𝑍 2 ) = (𝜇 + 2𝛿)3  )𝑥 :𝑛|  𝐴)𝑥 :𝑛| 14.7 (𝐼𝐴  + (𝐷  = 𝑛𝐴𝑥 :𝑛|   (𝐷𝐴 ) 14.8 (𝐼𝐴)𝑥 :𝑛| +   = (𝑛 + 1)𝐴𝑥 :𝑛|  𝑥 :𝑛| 14.9 (𝐼𝐴)𝑥 :𝑛|  + (𝐷𝐴) 𝑥 :𝑛|  = (𝑛 + 1)𝐴𝑥 :𝑛|  𝑛   (𝐼𝐴)𝑥  :𝑛| = ∑ 𝑘=1 𝑘 𝑘−1|𝐴𝑥 :1|

Recursive Formulas for Increasing and Decreasing Insurance 14.10 (𝐼𝐴)𝑥 :𝑛|  = 𝐴 𝑥 :𝑛|   + 𝑣𝑝𝑥 (𝐼𝐴)𝑥+1  󰆷 :𝑛−1| 14.11 (𝐼𝐴)𝑥 :𝑛|  = 𝐴𝑥 :1|   + 𝑣𝑝𝑥 (𝐼𝐴𝐴)𝑥+1 󰆷 :𝑛−1| 14.12 (𝐷𝐴)𝑥 :𝑛| 󰆷 :𝑛−1|  = 𝑛𝐴𝑥 :1| + 𝑣𝑝𝑥 (𝐷𝐴)𝑥+1  14.13 (𝐷𝐴)𝑥 :𝑛|  = 𝐴𝑥 :𝑛|  + (𝐷𝐴)𝑥 :𝑛−1| 

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Lesson 15 – Insurance: Relationships (𝐴𝑥 , 𝐴𝑥 , 𝐴𝑥 ) Uniform Distribution of Deaths 𝑖 15.1 𝐴𝑥 = ( ) 𝐴𝑥 𝑚

𝛿

𝑖 15.2 𝐴𝑥 :𝑛|  = ( ) 𝐴𝑥 :𝑛|  𝛿

 = ( 𝑖 ) 𝑛|𝐴𝑥 𝛿

𝑛|𝐴𝑥

𝑖 15.4 𝐴𝑥:𝑛|  = ( ) 𝐴𝑥 :𝑛|  + 𝐴𝑥:𝑛| 󰆷 

15.3

15.5 15.6

(𝑚) 𝐴𝑥 2

=

𝑖

𝛿

𝑖 (𝑚)

𝐴𝑥

2𝑖+𝑖 𝐴𝑥 = 2𝛿

2

𝐴𝑥

2

Claims Acceleration Approach

𝐴𝑥 = (1 + 𝑖)0.5 𝐴𝑥 0.5 𝐴𝑥 :𝑛|  = (1 + 𝑖) 𝐴𝑥 :𝑛|  0.5  𝑛| 𝐴𝑥 = (1 + 𝑖) 𝑛| 𝐴𝑥 0.5 𝐴𝑥:𝑛|  = (1 + 𝑖) 𝐴𝑥 :𝑛|  + 𝐴𝑥:𝑛| 󰆷  𝑚−1

𝐴𝑥 = (1 + 𝑖 ) 2𝑚 𝐴𝑥 2  𝐴𝑥 = (1 + 𝑖) 2𝐴𝑥 (𝑚)

Formula Summary of ASM 2014

9  = 𝑎󰇘 𝑥 − 𝑛 𝐸𝑥 𝑎󰇘 𝑥+𝑛 17.12 𝑎󰇘 𝑥:𝑛| 𝑛−1 17.13 𝑎󰇘 𝑥:𝑛|  = ∑𝑘=1 𝑎󰇘 𝑘| 𝑘−1 𝑝𝑥 𝑞𝑥+𝑘−1 + 𝑎󰇘 𝑛|  𝑛−1 𝑝𝑥 𝑛−1 𝑘 ∑ = 17.14 𝑎󰇘 𝑥:𝑛|  𝑘=0 𝑣 𝑘𝑝𝑥 ∞ 𝑘 𝑛| 𝑎󰇘 𝑥 = ∑ 𝑘=𝑛 𝑣 𝑘𝑝𝑥 17.15 Constant Force of Mortality

Lesson 17 – Annuities: Discrete, Expectation Annuities-Due Whole Life Annuities 1−𝐴 17.1 𝑎󰇘 𝑥 = 𝑑 𝑥 17.2 𝐴𝑥 = 1 − 𝑑𝑎󰇘 𝑥

17.3 𝑎󰇘 𝑥:𝑛|  =

𝑎󰇘 𝑥 =

𝑛| 𝑎󰇘 𝑥

1−𝐴𝑥:𝑛| 

Temporary Life Annuities 𝑑

 = 1 − 𝑑 𝑎󰇘 𝑥:𝑛|  17.4 𝐴𝑥:𝑛|

17.7 𝑎󰇘 𝑛|  =

1−𝑣 𝑛

Whole life annuities 1 − 𝑖𝑎𝑥 𝐴𝑥 = 1+𝑖

𝑣 𝑛 −𝑣 𝐾𝑥 +1 𝑑

𝐾𝑥 ≤ 𝑛 − 1

𝐾𝑥 ≥ 𝑛

Temporary life annuities 1 = 𝑖𝑎𝑥:𝑛|  + 𝐴𝑥:𝑛|  + 𝑖𝐴𝑥 :𝑛|  17.16 𝐴𝑥 :𝑛| = 𝑣𝑎󰇘 𝑥:𝑛|  − 𝑎𝑥:𝑛| 

n-year certain-and-life annuity-due 𝑑

17.8 𝑎󰇘 𝐾𝑥 +1| =

1−𝑣 𝐾𝑥 +1 𝑑

𝐾𝑥 ≥ 𝑛

Table 17.2: Actuarial notation for standard types of annuity-due Name Whole Life Temporary Life Deferred Life Deferred Temporary Life Certainand-life

Annual pmt at k 10 ≤ 𝑘 ≤ 𝐾𝑥 10 ≤ 𝑘 ≤ min(𝐾𝑥 , 𝑛 − 1) 0𝑘 > min(𝐾𝑥 , 𝑛 − 1)

00 ≤ 𝑘 < n ork > Kx 1𝑛 ≤ 𝑘 ≤ K x 00 ≤ 𝑘 < n 1𝑛 ≤ 𝑘 < min(𝑛 + 𝑚, K x + 1) 0𝐾𝑥 ≥ min(𝑛 + 𝑚, Kx + 1) 10 ≤ 𝑘 < max(Kx + 1, 𝑛) 0𝑘 ≥ max(Kx + 1, 𝑛)

  + 𝑛| 𝑎󰇘 𝑥 𝑎󰇘 𝑥:𝑛| | = 𝑎󰇘 𝑛|

PV 𝑎󰇘   𝐾𝑥 +1| 𝑎󰇘   𝐾𝑥 < 𝑛 𝐾𝑥 +1| 𝑎󰇘 𝑛| 𝐾𝑥 ≥ 𝑛 0𝐾𝑥 < 𝑛 𝑎󰇘   − 𝑎󰇘 𝑛|𝐾𝑥 ≥ 𝑛 𝐾𝑥 +1| 0𝐾𝑥 < 𝑛 𝑎󰇘   − 𝑎󰇘 𝑛|𝑛 ≤ 𝐾𝑥 ≤ 𝑛 + 𝑚 𝐾𝑥 +1| 𝑎󰇘  − 𝑎󰇘 𝑛|  𝐾𝑥 ≥ 𝑛 + 𝑚 𝑛+𝑚| 𝑎󰇘 𝑛| 𝐾𝑥 < 𝑛 𝑎󰇘   𝐾𝑥 ≥ 𝑛 𝐾𝑥 +1|

𝑛| 𝑎󰇘 𝑥 = 𝑛 𝐸𝑥 𝑎󰇘 𝑥+𝑛 17.11 𝑎󰇘 𝑥 = 𝑎󰇘 𝑥:𝑛|  + 𝑛|𝑎󰇘 𝑥

17.9

17.10

𝑞+𝑖

= 𝑛 𝐸𝑥 𝑎󰇘 𝑥

Annuities-immediate

n-year Deferred Whole Life Annuity 17.5 0𝐾𝑥 ≤ 𝑛 − 1 17.6 𝑎󰇘 𝐾𝑥 𝑛| = +1| − 𝑎󰇘 

1+𝑖

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Symbol 𝑎󰇘 𝑥 𝑎󰇘 𝑥:𝑛| 𝑛| 𝑎󰇘 𝑥

 𝑛| 𝑎󰇘 𝑥:𝑛|

𝑎󰇘𝑥:𝑛|  |

Certain-and-life annuities 17.17 𝑎󰇘 𝑥 = 𝑎𝑥 + 1 17.18 𝑎󰇘 𝑥:𝑛|  = 𝑎𝑥:𝑛−1|  + 1

17.19 𝑎󰇘 𝑥:𝑛|  = 𝑎𝑥:𝑛|  + 1 − 𝑛 𝐸𝑥 17.20 𝑛| 𝑎󰇘 𝑥 = 𝑛| 𝑎𝑥 + 𝑛 𝐸𝑥

1/mthly annuities (17.1)  𝑎󰇘 𝑥

(𝑚)

(17.2)  𝐴𝑥

(𝑚)

17.21 𝑠󰇘𝑥:𝑛|  =

=

(𝑚)

1−𝐴𝑥

𝑑(𝑚)

= 1 − 𝑑(𝑚) 𝑎󰇘 𝑥

𝑎󰇘 𝑥:𝑛|

(𝑚)

𝑛 𝐸𝑥

Official Definition: 𝑎󰇘 𝑥 = ∑∞ 𝑛=1 𝑎󰇘 𝑛 ( 𝑛−1𝑞𝑥 ) Alternative ∞ 𝑎󰇘 𝑥 = ∑𝑛=0 𝑣 𝑛 𝑛 𝑝𝑥

Formula Summary of ASM 2014

10 18.1 𝑎 𝑇𝑥| =

Lesson 19 – Variance

Lesson 18 – Annuities: Continuous, Expectation Name Whole Life Temporary Life Deferred Life Deferred Temporary Life Certainand-life

1−𝑣 𝑇𝑥 𝛿

Annual pmt at k 1𝑡 ≤ 𝑇 1𝑡 ≤ min(𝑇, 𝑛) 0𝑡 > min(𝑇, 𝑛)

PV 𝑎 𝑇|  𝑎 𝑇|  𝑇 ≤ 𝑛 𝑎𝑛| 𝑇 > 𝑛 0𝑇 ≤ 𝑛 𝑎 𝑇| 𝑛|  − 𝑎 𝑇 > 𝑛 0𝑇 ≤ 𝑛 𝑎 𝑇| 𝑛|  − 𝑎 𝑛 < 𝑇 ≤ 𝑛 + 𝑚 𝑛| 𝑎  − 𝑎  𝑇 > 𝑛 + 𝑚 𝑛+𝑚| 𝑎 𝑛| 𝑇 < 𝑛 𝑎  𝑇 ≥ 𝑛 𝐾𝑥 +1|

0𝑡 ≤ nort > T 1𝑛 < 𝑡 ≤ 𝑇 0𝑡 ≤ nort > T 1𝑛 < 𝑡 ≤ 𝑛 + 𝑚𝑜𝑟𝑡 ≤ 𝑇 0𝑇 > 𝑛 + 𝑚 1𝑡 ≤ max(𝑇, 𝑛) 0𝑡 > max(T, 𝑛)

18.2 𝑎𝑥 = 𝛿 𝑥 18.3 𝐴𝑥 = 1 − 𝛿𝑎𝑥 ∞ 18.4 𝑎𝑥 = ∫0 𝑎𝑡| 𝑡 𝑝𝑥 𝜇𝑥+𝑡 𝑑𝑡 ∞ 18.5 𝑎𝑥 = ∫0 𝑣𝑡 𝑡 𝑝𝑥 𝑑𝑡 1−𝐴

18.6 𝑎𝑥 =

𝜇 1− 𝜇+𝛿

=

𝛿 𝜇+𝛿

𝛿 𝛿 1−𝐴𝑥:𝑛| 

18.7 𝑎𝑥:𝑛|  = 𝛿 18.8 𝐴𝑥:𝑛| 𝑥:𝑛|  = 1 − 𝛿𝑎  18.9

18.10

𝑥 𝑛| 𝑎

=

𝑥 𝑛| 𝑎

1−𝐴𝑥 𝛿



=

𝛿

= 𝑛 𝐸𝑥 𝑎𝑥 =

1

=



19.2 𝐸[𝑎2𝑇 ] = ∫0 ( 𝑥|

𝑥 𝑛| 𝑎

19.3 𝑉𝑎𝑟(𝑎 𝑇𝑥 | ) =

𝑎𝑥:𝑛|  |

− 𝑎 19.6 𝑉𝑎𝑟(𝑌) = 𝑥 𝛿 𝑥 − (𝑎𝑥 )2 2 = 1 − (2𝛿) 𝑎𝑥:𝑛| 19.7 2𝐴𝑥:𝑛|  

 𝑥:𝑛| 𝑛| 𝑎

𝜇+𝛿

𝛿

(𝐶𝐹𝑀)

1−𝑒 −𝑛(𝜇+𝛿) 𝜇+𝛿

𝛿2

2 2  𝐴 𝑥:𝑛|  −(𝐴  )

𝑥:𝑛| 19.4 𝑉𝑎𝑟(𝑌) = 𝛿2 2  19.5 𝐴𝑥 = 1 − (2𝛿) 2 𝑎𝑥

2(𝑎

19.8 𝑉𝑎𝑟(𝑌) =

2

)

2 2(𝑎𝑥:𝑛|  − 𝑎  ) 𝑥:𝑛|

− (𝑎𝑥:𝑛|) Note: 𝑎𝑥 is 1st moment at twice FOI 2

𝛿

2

2

𝐴𝑥−(𝐴𝑥 )2 𝑑2

𝐴𝑥:𝑛|  −(𝐴𝑥:𝑛|  )

2

19.10 𝑉𝑎𝑟(𝑌) = 𝑑2 19.11 2𝐴𝑥 = 1 − 2𝑑 2𝑎󰇘 𝑥 = 1 − (2𝑑 − 𝑑2 ) 2𝑎󰇘 𝑥

(𝐶𝐹𝑀)

𝑒 −𝑛(𝜇+𝛿)

2

) 𝑡 𝑝𝑥 µ𝑥+𝑡 𝑑𝑡 𝛿 2  (  )2 𝐴 𝑥− 𝐴 𝑥

∞ 1−𝑣𝑡

19.9 𝑉𝑎𝑟(𝑎󰇘  𝐾𝑥 +1| ) =

19.12 𝑉𝑎𝑟(𝑌) =

𝐴𝑥:𝑛|  −𝐴𝑥

18.11 𝑎𝑥:𝑛| 𝑥 (1 − 𝑛 𝐸𝑥 ) =  = 𝑎

CFM: 𝑎𝑥 = 𝑎𝑥+𝑛 Relationships: 𝑎𝑥 = 𝑎𝑥:𝑛| 𝑥+𝑛  + 𝑛 𝐸𝑥 𝑎

2 ] = ∫0 𝑎𝑇| 19.1 𝐸[𝑎2𝑇  𝑡 𝑝𝑥 µ𝑥+𝑡 𝑑𝑡 𝑥|

Whole Life and Temporary Life

2

𝜇+𝛿

1−𝐴𝑥:𝑛| 

Symbol 𝑎𝑥 𝑎𝑥:𝑛|

(𝐶𝐹𝑀)

2(𝑎󰇘 𝑥 − 2𝑎󰇘 𝑥 ) + 2𝑎󰇘 𝑥 𝑑

Other Annuities 2 19.13 𝐸[𝑌𝑥󰇘 2 ] = ∑ ∞  𝑘=1 𝑎󰇘 𝑘|

𝑘−1|𝑞𝑥

2 󰇘 2  ] = ∑𝑛𝑘=1 𝑎󰇘 𝑘| 19.14 𝐸[𝑌𝑥:𝑛| 

𝑘−1|𝑞𝑥

− (𝑎󰇘 𝑥 )2

2 + 𝑛 𝑝𝑥𝑎󰇘 𝑛|2 = ∑𝑛−1 𝑘| 𝑘=1 𝑎󰇘

𝑘−1|𝑞𝑥

+ 𝑛−1 𝑝𝑥𝑎󰇘 𝑛|2

𝑛| 𝑥 𝑎𝑥:𝑛|   + 𝑛|𝑎  | = 𝑎

Monica E. Revadulla EXAM MLC – Models for Life Contingencies

Formula Summary of ASM 2014

11 Lesson 20 – Annuities: Probabilities and Percentiles

For the continuous whole life annuity PVRV Y, the relationship of 𝐹𝑌 (𝑦)to 𝐹𝑥 (𝑡) as follows: 𝐹𝑌 (𝑦) = Pr(𝑌 ≤ 𝑦) 1 − 𝑣 𝑇𝑥 = Pr( ≤ 𝑦) 𝛿 = Pr(𝑣 𝑇𝑥 ≥ 1 − 𝛿𝑦) = Pr(𝑇𝑥 ln 𝑣 ≥ ln(1 − 𝛿𝑦)) = Pr(−𝑇𝑥 𝛿 ≥ ln(1 − 𝛿𝑦)) ln(1 − 𝛿𝑦) = Pr (𝑇𝑥 ≤ ) 𝛿 ln(1 − 𝛿𝑦) = 𝐹𝑥 (− ( )) 𝛿

To calculate a probability for an annuity, calculate the 𝑡 for which 𝑎𝑡 has the desired property. Then calculate the probability 𝑡 is in that range.

To calculate a percentile of an annuity, calculate the percentile of 𝑇𝑥 , then calculate 𝑎𝑇𝑥 |

Some adjustments may be needed for discrete annuities or non-whole-life annuities, as discussed in the lesson. If forces of mortality and interest are constant, then the probability that the present value of payments on a continuous whole life annuity will be greater than its expected present value is Pr(𝑎 𝑥 ) = ( 𝑇𝑥 | > 𝑎

𝜇

𝜇 𝛿 ) 𝜇+𝛿

Monica E. Revadu...


Similar Free PDFs