Heizer operation management solution pdf PDF

Title Heizer operation management solution pdf
Author kimo hwary
Course Business management
Institution جامعة القاهرة
Pages 87
File Size 3.5 MB
File Type PDF
Total Downloads 3
Total Views 155

Summary

summaries...


Description

Instructor’s Solutions Manual for Additional Problems

Operations Management

E I G H T H E D I T I O N



Principles of

Operations Management

S I X T H E D I T I O N



JAY HEIZER



Texas Lutheran University

BARRY RENDER Upper Saddle River, New Jersey 07458



Rollins College



VP/Editorial Director:Jeff Shelstad Executive Editor:Mark Pfaltzgraff Senior Editor:Alana Bradley Senior Managing Editorial Assistant: Jane Avery

Copyright ©2006 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458. Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding

permission(s), write to: Rights and Permissions Department. TM

Pearson Prentice Hall

is a trademark of Pearson Education, Inc.

10 9 8 7 6 5 4 3 2 1 

Contents Homework Problem Answers Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Supplement 6: Chapter 7 Supplement 7: Chapter 8 Chapter 9 Supplement 10: Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Module A: Module B: Module C: Module D:

Operations and Productivity ........................................................................... A-1 Project Management ....................................................................................... A-3 Forecasting ...................................................................................................... A-7 Design of Goods and Services ...................................................................... A-11 Managing Quality ......................................................................................... A-15 Statistical Process Control ............................................................................ A-18 Process Strategy ............................................................................................ A-20 Capacity Planning ......................................................................................... A-23 Location Strategies ....................................................................................... A-27 Layout Strategy ............................................................................................. A-30 Work Measurement ...................................................................................... A-34 Inventory Management ................................................................................. A-36 Aggregate Planning ...................................................................................... A-42 Materials Requirements Planning (MRP) & ERP ........................................ A-46 Short-Term Scheduling ................................................................................. A-51 Just-In-Time and Lean Production Systems ................................................. A-55 Maintenance and Reliability ......................................................................... A-57 Decision Making Tools ................................................................................ A-59 Linear Programming ..................................................................................... A-64 Transportation Modeling .............................................................................. A-70 Waiting Line Models .................................................................................... A-75

Module E: Module F:

Learning Curves ........................................................................................... A-79 Simulation ..................................................................................................... A-80

iii



1

Operations and Productivity

CHAPTER

1.1

! Last year’s " number of units of output # total factor $ # $ = total dollar value of all inputs used #productivity$ % &

a.



12,000 units

=



('( 12, 000)(  $2.00) + ( 14, 000)( $10.50) +

( 2, 000 )( $8.00) + ( 4, 000)( $0.70) + $30, 000)* =

12,000 units $219,800

= 0.0546 units dollar

! This year’s " number of units of output # total factor $ = # $ #productivity $ total dollar value of all inputs used % &

b.



14,000 units

=



('(14, 000)(  $2.05) + ( 16, 000)( $11.00) +

(1,800 )($7.50 ) + ( 3,800 )( $0.75) + $26, 000)* =

14,000 units $247,050

c.



= 0.0567 units dollar

! This year’s " ! Last year’s " # total factor $ − # total factor  $ # $ # $ #productivity$ # productivity$ % & % & × 100% = 0.0567− 0.0546× 100%  0.0546 ! Last year’s " # total factor $ #productivity$ % & = + 3.84% ≈ 3.8%

Answer : Total factor productivity increased by 3.798% this year as compared to last year.

A-1

1.2

0.15 = So L =

57,600

(160)(12)(L )

, where L = numberof laborers employed at the plant.

57,600

(160 )(12)( 0.15)

= 200 

Answer : 200 laborers 1.3

Output = 28,000 customers  There are 4 approaches to solving the problem correctly: 1. Input = 7 workers  28,000 Then, = 4,000 customers worker 7 Input = 7 ( 40) labor weeks  2. Then, 3.



1.5

= 100 customers labor week

28,000 7 (40 )( 50 )

= 2 customers labor hour

Input = 7 ( 40)( $250) dollars of worker wages  Then,

1.4

7 ( 40 )

Input = 7 ( 40)( 50) labor hours  Then,

4.

28,000

28,000 7 (40 )($250 )

6, 600 Cadillacs

= 0.40 customers per dollar of labor

= 0.10

(x )( labor hours)

 x = 66, 000 labor hours There are 300 laborers. So, 66,000 labor hours = 220 labor hours laborer 300 laborers $ output labor hour

=

52 ( $90) + 198( $80) 8 ( 45 )

=

20, 520 360

= $57.00per labor hour

A-2

Project Management

3

CHAPTER

Gantt Chart

3.1

A

20

B

80 120

C

110

D

140

E F

150 170

G

160

H I 50

3.2

100 Hours

150

200 200 

AON Network: 60

30

20

B Purchasing

D Sawing

G Infill

20

20

10

30

A Planning

E Placement

F Assembly

I Decoration

100 10

C Excavation

H Outfill



A-3

3.3

AOA Network:

Excavate



3.4

1–2–3–4–5–6–7–8–9 1–2–3–4–5–6–8–9 1–2–4–5–6–7–8–9 1–2–4–5–6–8–9

20 + 60 + 30 + 20 + 10 + 20 + 0 + 30 20 + 60 + 30 + 20 + 10 + 10 + 30 20 + 100 + 20 + 10 + 20 + 0 + 30 20 + 100 + 20 + 10 + 10 + 30

190 180 200 190

The longest path clearly is 1 – 2 – 4 – 5 – 6 – 7 – 8 – 9; hence, this is the critical path, and the project will end after 200 hours.

ES = 20

LF = 20

ES = 80

ES = 120

Excavate ES = 20 EF = 120 LS = 20 LF = 120

ES = 150 EF = 170 LS = 150

LF = 150

LF = 170

LF = 200



Answer : The critical path therefore is A – C – E – F – G – I (200 hours). The activities that can be delayed include ones with slack times > 0. Thus, B (10 hours), D (10 hours), and H (10 hours) can be delayed.

A-4

3.5

! a + 4m + b " !b −a" Variance # $ $ 6 % & % 6 &

A:

120 6

D: E:

6 120 6 60

F: G: H: I:

180

= 20

6 60 6

180 6

= 30 = 20

= 10

6 120

! b − a" $ % 6 &

Standard Deviation#

2

B : 360 = 60 6 600 C: = 100 6

3.6

2

Mean: #

= 20

= 10 = 30

A:

( 20 ) 36

= 11.11

A:

2

20 6

= 3.33

B : ( 60 ) = 100.00 B : 60 = 10.00 36 6 2 (120 ) 120 C: = 400.00 C : = 20.00 36 6 2 (10 ) 10 D: D: = 2.78 = 1.67 36 6 2 (10) 10 = 2.78 =1.67 E: E: 36 6 2 (0) 0 = 0.00 F: F : = 0.00 36 2 6 ( 40 ) 40 = 44.44 = 6.67 G: G: 36 6 2 (4) 4 = 0.44 H: H : = 0.67 36 6 2 ( 40 ) 40 = 44.44 = 6.67 I: I: 36 6



Since the critical path is A – C – E – F – G – I, only those variances are along the critical path are used. Therefore, the variances along critical path are 11.11, 400, 2.78, 0, 44.44, and 44.44 . So the sum of these variances = 502.77 . Thus, the project completion standard deviation = 502.77 ≅ 22.4 . µ= mean

time of critical path = 200 hrs σ = 22.4 hrs  240 − 200 40 = = 1.8. Using the cumulative normal distribution table in Thezvalue = 22.4 22.4 Appendix I of the text, we observe that 96.4 percent of the distribution lies to the left of 1.8 standard deviations. Hence, there is a 100 − 96.4 = 3.6% chance that it will take more than 240 hrs to build the garden/picnic area.

A-5

3.7

The critical path is A – C – E – F – G – I. Hence, the project completion variance =11.11 +400 + 2.78 +0 + 44.44 + 44.44 = 502.77.  So, the project completion standard deviation = 502.77 ≅ 22.4 . The cumulative normal distribution tells us that 90% of the area lies to the left of 1.29 standard deviations. Therefore, amount of time to build the garden/picnic area should be 200 + 22.4 (1.29) = 200 + 29 = 229 hours .

3.8

a.

Activity on Nodes Diagram of the project. B 1

E 2

A 1

F 2 C 4

b.

c. d.

3.9



The critical path, listing all critical activities in chronological order: A → B → E → F 1 + 1 + 2 + 2 = 6 ( not CP)  A→ C→ F 1+ 4 + 2 = 7. This is the CP. The project duration (in weeks): 7 (This is the length of CP.) The slack (in weeks) associated with any and all non-critical paths through the project:Look at the paths that aren’t critical—only 1 here—so from above: A → B → E → F  7 − 6 = 1 week slack.

We have only 1 activity with probabilistic duration. Due date − µ 8 − (1 + 4 + 2 ) 1 Z = = = = 2 (length of entire path is 7, not 4). For a z= 2 , 0.5 0.5 σ this means P(Due date < 8 ) = 97.72% (table lookup) for the path so chance of being OVER 8 weeks is 2.28% (and we know non-CP path will be only 6 weeks )

3.10

Helps to modify the AON with the lowest costs to crash 1. CP is A → C → F ; C is cheapest to crash, so take it to 3 wks at $200. (and $200 < $250) 2. Now both paths through are critical. We would need to shorten A or F, or shorten C and either B/E. This is not worth it, so we would not bother to crash any further.

A-6

4

Forecasting

CHAPTER

4.1

Present = period ( week ) 6.  So: F7 =

4.2

t 1 2 3 4

1 3

A6 +

1 4

A5 +

1 4

A4 +

1 6

A3 =

1 3

1

1

1

4

4

6

(52 ) + ( 63) + ( 48 ) + ( 70 ) = 56.75 patients 

At Ft 120 —  136 —  114 128 116 125

120 + 136

+ , 2 2 - Checking Data  136 + 114 250 , = = 125 ,. 2 2 =

256 

116  +114 F = 5

4.3

2

Method 1:

= 128,

230 = 2 = 115 = Answer  MAD : 0.20 +0.05 + 0.05 + 0.20 = 0.5000 ← better  MSE : 0.04 +0.0025 + 0.0025 + 0.04 = 0.0850 

Method 2:

MAD : 0.1 + 0.20 + 0.10 + 0.11 = 0.5100  MSE : 0.01 +0.04 +0.01 + 0.0121 = 0.0721 ← better 

A-7

4.4

y = a + bx  4

/x y i

i =1

i

= 58,538

x = 75.75



y = 191.5 n

/x

2 i

= 23,209

i =1

58, 538 − 4 (75.75 )(191.5 )

b=

23, 209 − 4( 75.75)

2

=

513.50 =2 256.75

a =191.5 − 2 ( 75.75) = 40 y ≈ 40 + 2 x



x = 85

0  ≈ y

210 Actual Forecast  Demand Demand 88 88 72 88 68 84 48 80 ← Answer 72

4.5

Day Monday Tuesday Wednesday Thursday Friday

t 1 2 3 4 5

1 F

t  = αA

t +1

F2 = F3 = F4 = F5 =

1 4 1 4 1 4 1 4

) F. Let = 4 . Let Monday forecast demand = 88

1 − α

+(

t

α

3

( 88) + ( 88) = 88 4 3

( 72) + ( 88) = 18+ 66 = 84 4 3



( 68) + ( 84) = 17 + 63 = 80 4 3

( 48) + ( 80) = 12 + 60 = 72 4

A-8

4.6

Winter Spring Summer Fall 2001 1, 400 1,500 1, 000 600 2002 1, 200 1, 400 2,100 750  2003 1, 000 1,600 2, 000 650 2004 900 1,500 1,900 500 4,500 6,000 7,000 2,500 20,000 Average over all seasons: = 1,250 16 6,000 = 1,500 Average over spring: 4 1,500 = 1.2 Spring index: 1, 250

! 5,600 " $ (1.2 ) = 1, 680 sailboats % 4 &

Answer : #

4.7

We need to find the smoothing constant α. We know in general thatFt +1 = α At + (1 −α )Ft , t= 1, 2, 3 . Choose either t= 2 or t = 3 ( t= 1 won’t let us find αbecause F2 = 50  = α ( 50 ) + (1 − α) 50 holds for anyα). Let’s pick, e.g., t = 2 . Then F  = α( 42) +( 1 − α) 50 . So 3 = 48

48 = 42α + 50 − 50α −2 = − 8α



1 4 =α .  α (46 ) + (1 − α ) 50 , with Now we can findF5 : F5 =

F 5=

1 4

3

(46 ) + (50 ) =49 ←Answer  4

A-9

α =

1 4

. So

4.8

Let X 1, X 2,

, X6 be the prices; Y1 , Y2 ,

!

, Y6 be the number sold.

!

6

/X i

 i =1

X =

= Average price = 3.25833 

6

(1)

6

Y =

/Y = Average number sold = 550.00 i =1

i

6

(2)

!# All calculations to the"$  1 ## nearest th $$ 100,000 % &

6

/X Y = 9,783.00  i =1

6

/X i =1

(3)

i i

2 i

= 67.1925 

(4)

Then y ≈ a + bx , where y = number sold, x= price , and

/X Y − n ( X )( Y) 6

b=

i i

i =1

6

/X i =1

2 i

=

2

− n ( X)

( 9, 783) − 6 ( 3.25833 )( 550) − 969.489 = = − 277.61395 2 3.49222 67.1925 − 6( 3.25833) 

a = ( Y ) − b ( X ) = 1,454.5578

So at x = 1.80 , y =1, 4 54.5578 −277.61395( 1.80) = 954.85270 . Now round to the nearest integer: Answer : 955 dinners

/ (A − F ) n

t

4.9

Tracking Signal =

t

t= 1



Month

MAD At  Ft 

May June July August September October

100 80 110 115 105 110

100 104 99 101 104 104

0 24 11 14 1 6

0 –24 11 14 1 6

November December

125 120

105 109

20 11 Sum: 87

20 11 Sum: 39

87 = 10.875  8 39 Answer : = 3.586  10.875

At − Ft 

So: MAD :

1 ! " # to the nearest 1,000 th $  % & A-10

(At − Ft ) 

5.1

(0.80) 90 of 100

$42,500

–$32,500

$12,500

–$43,750

–$18,750

80 of 100 non-defect

–$75,000



Answer: $27,500—use K1 Outcome Calculations

90 10 1 ( 500)( 300)( $1.20) − ( 500)( 300)( $1.30) = ,−$100, 000 + 100  2,−$100, 000 + 100 $162, 000− $19, 500 = $42, 500 3 70 30 1 ( 150, 000) ( $1.20) − ( 150, 000)( $1.30) = ,−$100, 000 +  100 100 2 ,3−$100, 000 + $126, 000− $58, 500= − $32, 500

A-11 

90 10 1 (150, 000)( $1.20) − ( 150, 000)( $1.30) = ,−$130, 000 +  100 100 2 ,3−$130, 000+ $162, 000− $19, 500= $12, 500 1 $130, 000 75 150, 000 $1.20 25 150, 000 $1.30 + ( )( )− ( )( )= ,−  100 ,23−$130, 000 + 100 $35, 000− $48, 750 = − $43, 750 95 5 1 (150, 000)( $1.20) − ( 150, 000)( $1.30) = ,−$180, 000 +  100 100 2 ,3−$180, 000 + $171, 000− $9, 750= − $18, 750 80 20 1 (150, 000)( $1.20) − ( 150, 000)( $1.30) = ,−$180, 000 +  100 100 2 ,−$180, 000 + $144, 000− $39, 000 = − $75, 000 3 (0.3) F market

5.2

80.0

66.0 Use D0

(0.7) U market (0.4) F market

84.0

Use D1

60.0

99.0

84.0 (0.6) U market (0.6) F market

Use D2

74.0

89.2

80.2 (0.4) U market

66.7

(All $ figures in millions in tree)



$ Profits : D0 − F : 1,000 ( 80, 000)

= $80, 000,000

D0 − U : 750( 80, 000)

= $60, 000, 000

D1− F : 1, 000 (100, 000) − 1, 000, 000 = $99, 000, 000 D1− U : 750( 100, 000) − 1, 000, 000 = $74, 000, 000 D2 − F : 1, 000( 90, 000) − 800, 000

= $89, 200, 000

D2 − U : 750( 90, 000) − 800, 000

= $66, 700,000

Answer : Answer: Design D1 has an expected profit of $84,000,000.

A-12

(0.3) Demand rises

5.3

$10,000 Purchase overhead hoist

$14,000

(0.5) Demand stays $10,000 same

(0.2)falls Demand

–$20,000

(0.4) Demand rises

$20,000

Purchase forklift $14,000

Do nothing

$30,000

(0.6) Demand stays $10,000 same

$0



Answer : Maximum expected payoff = $14,000  5.4

$0 Do nothing High demand (0.6) $300,000 Use A

160K

Low demand (0.4)

–$50,000

High demand (0.6) $300,000

Use B 180K Use C

Low demand (0.4) $0 High demand (0.6) $250,000

302K Low demand (0.4) Upgrade to D

$380,000

380K $0 No upgrade to D Note: K = $1,000’s



Answer : Use Design C. If demands turns out to be low, upgrade to Design D.

A-13 


Similar Free PDFs