Integration Exercises with Solutions.pdf PDF

Title Integration Exercises with Solutions.pdf
Author Hassanin Risha
Pages 22
File Size 125.2 KB
File Type PDF
Total Downloads 712
Total Views 835

Summary

MATH 105 921 Solutions to Integration Exercises MATH 105 921 Solutions to Integration Exercises s2 + 1 Z 1) ds s2 − 1 Solution: Performing polynomial long division, we have that: Z 2 Z s +1 2 ds = (1 + ) ds s2 − 1 s2 − 1 Z Z 2 = ds + 2 ds s −1 Z 2 =s+ 2 ds s −1 Using partial fraction on the remainin...


Description

MATH 105 921

Solutions to Integration Exercises

MATH 105 921 Solutions to Integration Exercises 1)

s2 + 1 ds s2 − 1

Z

Solution: Performing polynomial long division, we have that: Z Z 2 2 s +1 ds = (1 + ) ds s2 − 1 s2 − 1 Z Z 2 ds = ds + 2 s −1 Z 2 =s+ ds 2 s −1 Using partial fraction on the remaining integral, we get: s2

2 A B A(s + 1) + B(s − 1) (A + B)s + (A − B) = + = = −1 s−1 s+1 (s + 1)(s − 1) s2 − 1

Thus, A + B = 0 and A − B = 2. Adding the two equations together yields 2A = 2, that is, A = 1, and B = −1. So, we have that: Z Z Z 1 1 2 ds = ds − ds 2 s −1 s−1 s+1 Therefore, Z

2)

Z

0

s2 + 1 ds = s + s2 − 1

2 ds s2 − 1 Z Z 1 1 =s+ ds − ds s−1 s+1 = s + ln |s − 1| − ln |s + 1| + C Z

√ x 1 + 2x dx

4

Solution: Using direct substitution with u = 1 + 2x and du = 2dx, we may write

Page 1 of 22

MATH 105 921

Solutions to Integration Exercises

x = 21 (u − 1). Moreover, when x = 4, u = 9, and when x = 0, u = 1. Thus, Z

3)

Z

0



1

√ 1 (u − 1) u du 4 Z9 1 1 1 3 (u 2 − u 2 ) du = 9 4 1 5 1 3 = ( u 2 − u 2 ) |19 10 6 1 1 243 27 =( − )−( − ) 10 6 10 6 −298 = 15

x 1 + 2x dx = 4

Z

sin2 x cos2 x dx

Solution: Using half-angle identities Z Z 2 2 sin x cos x dx = Z = Z =

sin2 x =

1−cos(2x) 2

and cos2 x =

1+cos(2x) , 2

we get:

1 (1 − cos(2x))(1 + cos(2x)) dx 4 1 (1 − cos2 (2x)) dx 4 Z 1 1 dx − cos2 (2x) dx 4 4 Z x 1 cos2 (2x) dx = − 4 4

On the remaining integral, we apply the half-angle identity cos2 (2x) = obtain: Z Z x 1 1 + cos(4x) 2 dx = + sin(4x) + C cos (2x) dx = 2 2 8

1+cos(4x) , 2

Hence, Z

4)

Z

sin2 x cos2 x dx =

x 1 x 1 x 1 − ( + sin(4x)) + C = − sin(4x) + C 4 4 2 8 8 32

√ sin( w) dw

Page 2 of 22

and

MATH 105 921

Solutions to Integration Exercises

√ Solution: Using direct substitution with t = w, and dt = √ 2 w dt = 2t dt, we get: Z Z √ sin( w) dw = 2t sin t dt

1 √ dw, 2 w

that is, dw =

Using integration by part method with u = 2t and dv = sin t dt, so du = 2 dt and v = − cos t, we get: Z Z 2t sin t dt = −2t cos t + 2 cos t dt = −2t cos t + 2 sin t + C Therefore, Z

5)

Z

√ √ √ √ sin( w) dw = −2 w cos( w) + 2 sin( w) + C

ln(x) dx x Solution: Using direct substitution with u = ln(x) and du =

1 x

dx, we get:

Z ln(x) u2 dx = u du = +C x 2 Z ln(x) 1 ⇒ dx = (ln(x))2 + C x 2 Z

6)

Z

sin t cos(2t) dt Solution: Recall the double-angle formula that cos(2t) = 2 cos2 t − 1, we get: Z Z sin t cos(2t) dt = sin t(2 cos2 t − 1) dt Z Z Z 2 = 2 sin t cos t dt − sin t dt = 2 sin t cos2 t dt + cos t On the remaining integral, using direct substitution with u = cos t and du = − sin t dt, we have that: Z Z 2 2 2 2 sin t cos t dt = −2u2 du = − u3 + C = − cos3 t + C 3 3

Page 3 of 22

MATH 105 921

Solutions to Integration Exercises

Therefore, Z

7)

Z

2 sin t cos(2t) dt = − cos3 t + cos t + C 3

x+1 dx 4 + x2 Solution: Observe that we may split the integral as follows: Z Z Z x+1 x 1 dx = dx + dx 4 + x2 4 + x2 4 + x2 On the first integral on the right hand side, we use direct substitution with u = 4+x2 , and du = 2x dx. We get: Z Z x 1 dx = du = ln |2u| + C = ln(8 + 2x2 ) + C 2 4+x 2u On the second integral on the right hand side, we use inverse trigonometric substitux ), so 2 sec2 t dt = dx. Thus, tion with 2 tan t = x (or equivalently, t = arctan 2 Z Z Z 1 1 2 sec2 t 2 dx = 2 sec t dt = dt 4 + x2 4 + 4 tan2 t 4 sec2 t Z x 1 t 1 +C = dt = + C = arctan 2 2 2 2 Therefore, Z Z Z x+1 x 1 dx = dx + dx 4 + x2 4 + x2 4 + x2

8)

Z

= ln(8 + 2x2 ) +

x 1 +C arctan 2 2

sin(tan θ) dθ cos2 θ Solution: Using direct substitution with u = tan θ and du = sec2 θ dθ, we get: Z Z Z sin(tan θ) 2 dθ = sec θ sin(tan θ) dθ = sin u du = − cos u + C cos2 θ Z sin(tan θ) ⇒ dθ = − cos(tan θ) + C cos2 θ

Page 4 of 22

MATH 105 921 9)

Solutions to Integration Exercises

√ x 3 − 2x − x2 dx

Z

Solution: Completing the square, we get 3 − 2x − x2 = 4 − (x + 1)2 . Using direct substitution with u = x + 1 and du = dx, we get: Z √ Z Z √ Z √ √ 2 2 2 4 − u2 du x 3 − 2x − x dx = (u − 1) 4 − u du = u 4 − u du − For the first integral on the right hand side, using direct substitution with t = 4 − u2 , and dt = −2u du, we get: Z √ Z 3 1 1√ 1 3 2 u 4 − u du = − t dt = − t 2 + C = − (4 − u2 ) 2 + C 2 3 3 For the second integral on the right hand  side, using inverse trigonometric substitution u with 2 sin s = u, that is, s = arcsin 2 , and 2 cos s ds = du, we get: Z p Z Z √ 2 2 4 − u du = 4 − 4 sin s2 cos s ds = 4 cos2 s ds Z 1 + cos(2s) ) = (2 + 2 cos(2s)) ds (using half-angle formula cos2 s = 2 = 2s + sin(2s) + C = 2s + 2 sin s cos s + C (using double-angle formula sin(2s) = 2 sin s cos s) u u u = 2 arcsin + 2 sin(arcsin ) cos(arcsin )+C 2 2 2 √   u 4 − u2 +u = 2 arcsin +C 2 2 Therefore, Z √ Z √ Z √ 4 − u2 du x 3 − 2x − x2 dx = u 4 − u2 du −

√  u 3 4 − u2 1 2 2 = − (4 − u ) − 2 arcsin −u +C 3 2 2 ! p   Z √ 2 4 − (x + 1) 3 x + 1 1 ⇒ x 3 − 2x − x2 dx = − (4 − (x + 1)2 ) 2 − 2 arcsin − (x + 1) +C 3 2 2

10)

Z

π 3

sin3 z cos z dz

0

Page 5 of 22

MATH 105 921

Solutions to Integration Exercises

Solution: Using direct substitution √ with u = sin z, and du = cos z dz, when z = 0, π then u = 0, and when z = 3 , u = 23 . We have that: Z ⇒

11)

Z

3x2

Z

π 3

3

sin z cos z dz = 0 π 3

sin3 z cos z dz =

0

Z



3 2

0

u4 23 9 |0 = u du = 4 64 √

3

9 64

1 dx + 2x + 1

2 1 2 Solution: Completing the square, we get that 3x + 2x + 1 = 3 x + + = 3 3 !   2  1 1 3 2 9 x+ , and du = + 1 . Using direct substitution with u = √ x + 3 2 3 3 2 3 √ dx, we get: 2 Z Z Z 1 1 1 3 √ du = √ arctan u + C dx = dx = 1 2 9 2 3x + 2x + 1 2( 2 (x + 3 ) + 1) 2(u2 + 1) 2    Z 1 1 1 3 +C dx = √ arctan √ x + ⇒ 2 3x + 2x + 1 3 2 2 2

12)

Z

et



1 dt +1

1 Solution: Using direct substitution with u = et + 1 and du = et dt, so dt = t du = e 1 du. Hence, we get: u−1 Z Z 1 1 dt = du t e +1 u(u − 1) Using partial fraction, we get: 1 A B A(u − 1) + Bu (A + B)s + (−A) = + = = u(u − 1) u u−1 u(u − 1) u(u − 1)

Page 6 of 22

MATH 105 921

Solutions to Integration Exercises

Thus, A + B = 0 and −A = 1. So, A = −1, and B = 1. Thus, we have that: Z Z Z −1 1 1 du = du + du u(u − 1) u u−1 Therefore, Z

Z Z −1 1 1 du = du + du = − ln |u| + ln |u − 1| + C u(u − 1) u u−1 Z 1 ⇒ dt = − ln |et + 1| + ln |et | + C = − ln |et + 1| + t + C t e +1

13)

Z

e3a cos(3a) da

Solution: Using direct substitution with t = 3a, and dt = 3 da, we get: Z Z 1 t 3a e cos(3a) da = e cos t dt 3 Using integration by parts with u = cos t, du = − sin t dt, and dv = et dt, v = et , we get: Z Z 1 t 1 1 t e cos t dt = e cos t + et sin t dt 3 3 3 Using integration by parts again on the remaining integral with u1 = sin t, du1 = cos t dt, and dv1 = et dt, v1 = et , we get: Z Z 1 1 1 t t e sin t dt = sin te − et cos t dt 3 3 3 Thus, 1 t e cos t dt = 3 Z 1 t e cos t dt = ⇒ 3 Z

1 t e cos t + 3 1 t e cos t + 6

1 1 sin tet − 3 3 1 t e sin t + C 6

Z

et cos t dt

Therefore, Z

1 1 e3a cos(3a) da = e3a cos(3a) + e3a sin(3a) + C 6 6

Page 7 of 22

MATH 105 921 14)

Z

Solutions to Integration Exercises

x2 dx 1 + x6 Solution: Using direct substitution with u = x3 , and du = 3x2 dx, we get: Z Z 1 1 1 x2 dx = du = arctan u + C = arctan(x3 ) + C 1 + x6 3(1 + u2 ) 3 3

15)

Z

1 dt t(ln t)2 Solution: Using direct substitution with u = ln(t) and du = 1t dt, we get: Z Z 1 1 1 dt = du = − +C t(ln t)2 u2 u Z 1 1 dt = − +C ⇒ t(ln t)2 ln t

16)

Z

xe2x dx (2x + 1)2 Solution: Using integration by parts with u = xe2x , du = (e2x + 2xe2x ) dx, and 1 dv = (2x + 1)−2 dx, v = − 2(2x+1) , we get: Z

xe2x xe2x dx = − + (2x + 1)2 2(2x + 1)

Z

e2x + 2xe2x dx 2(2x + 1)

On the remaining integral, using direct substitution with u = 2x + 1, and du = 2 dx, we get: Z u−1 Z Z 2x e + (u − 1)eu−1 1 u−1 1 1 e + 2xe2x dx = du = e du = eu−1 + C = e2x + C 2(2x + 1) 4u 4 4 4 Therefore, Z

xe2x xe2x 1 2x e2x dx = − + e + C = +C (2x + 1)2 2(2x + 1) 4 4(2x + 1)

Page 8 of 22

MATH 105 921 17)

Z

Solutions to Integration Exercises

(tan x + cot x)2 dx Solution: Z Z 2 (tan x + cot x) dx = (tan2 x + 2 tan x cot x + cot2 x) dx Z = (sec2 x − 1 + 2 + csc2 x − 1) dx (using identities for tan2 x and cot2 x) Z = (sec2 x + csc2 x) dx = tan x − cot x + C

18)

Z

2

tet sin(t2 ) dt Solution: Using direct substitution with x = t2 and dx = 2t dt, we get: Z Z 1 t2 2 te sin(t ) dt = ex sin x dx 2 Using integration by parts with u = sin x, du = cos x dx, and dv = ex dx, v = ex , we get: Z Z 1 x 1 1 x e sin x dx = e sin x − ex cos x dx 2 2 2 Using integration by parts again on the remaining integral with u1 = cos x, du1 = − sin x dx, and dv1 = ex dx, v1 = ex , we get: Z Z 1 1 x 1 x e cos x dx = e cos x + ex sin x dx 2 2 2 Thus, 1 x e sin x dx = 2 Z 1 x ⇒ e sin x dx = 2 Z

1 x e sin x − 2 1 x e sin x − 4

1 x 1 e cos x − 2 2 1 x e cos x + C 4

Z

ex sin x dx

Therefore, Z

1 2 1 2 2 tet sin(t2 ) dt = et sin(t2 ) − et cos(t2 ) + C 4 4

Page 9 of 22

MATH 105 921 19)

Solutions to Integration Exercises

2p − 4 dp p2 − p

Z

Solution: Using partial fraction, we get: A B A(p − 1) + Bp (A + B)p + (−A) 2p − 4 = + = = p(p − 1) p p−1 p(p − 1) p(p − 1) Thus, A + B = 2 and −A = −4. So, A = 4, and B = −2. We have that: Z Z Z 2p − 4 4 2 dp = dp − dp p(p − 1) p p−1 Z 2p − 4 dp = 4 ln |p| − 2 ln |p − 1| + C ⇒ p(p − 1)

20)

Z

4 3

1 dx (3x − 7)2

Solution: Using direct substitution with u = 3x − 7, and du = 3 dx, when x = 3, then u = 2, and when x = 4, u = 5. We have that: Z 5 Z 4 1 −1 5 1 1 1 1 dx = du = |2 = − + = 2 2 3u 15 6 10 2 3u 3 (3x − 7) Z 4 1 1 ⇒ dx = 2 10 3 (3x − 7)

21)

Z

t3 5

(2 − t2 ) 2

dt

Solution: Using direct substitution with u = 2 − t2 , and du = −2t dt, we get: Z Z Z 2−u t2 t3 − 5 dt = 5 (t dt) = 5 du (2 − t2 ) 2 (2 − t2 ) 2 2u 2 Z 5 1 3 = (−u− 2 + u− 2 ) du 2 1 2 3 = u− 2 − u− 2 + C 3 Z 1 3 2 t3 (2 − t2 )− 2 − (2 − t2 )− 2 + C ⇒ 5 dt = 3 (2 − t2 ) 2

Page 10 of 22

MATH 105 921 22)

Z

x2



Solutions to Integration Exercises

1 dx 4 − x2

Solution:  Using inverse trigonometric substitution with x = 2 sin y, that is, y = x arcsin 2 , and dx = 2 cos y dy, we get: Z Z Z 1 2 cos y 2 cos y √ p dx = dy = dy 4 sin2 y(2 cos y) x2 4 − x2 4 sin2 y 4 − 4 sin2 y Z 1 1 csc2 y dy = − cot y + C = 4 4 Therefore, Z

√ x 4 − x2 1 1 √ )+C =− +C dx = − cot(arcsin 4 2 4x x2 4 − x2

Z p 23) y 2 − 1 dy Solution:   Using inverse trigonometric substitution with y = sec u, that is, u = arccos y1 , and dy = sec u tan u du, we get: Z p Z √ Z 2 2 y − 1 dy = sec u − 1(sec u tan u du) = tan2 u sec u du Z Z Z 2 3 = (sec u − 1) sec u du = sec u du − sec u du

For the second integral on the right hand side, we have that: Z sec u du = ln | sec u + tan u| + C For the first integral on the right hand side, we use the reduction formula: Z Z 1 1 1 1 3 sec u du = tan u sec u + ln | sec u + tan u| + C sec u du = tan u sec u + 2 2 2 2   p Observe that since u = arccos y1 , we have that tan u = y 2 − 1. Therefore, Z

1 1 sec u du − sec u du = tan u sec u − ln | sec u + tan u| + C 2 2 Z p p p 1 1 y 2 − 1 dy = y y 2 − 1 − ln |y + y 2 − 1| + C ⇒ 2 2 3

Z

Page 11 of 22

MATH 105 921 24)

Z

Solutions to Integration Exercises

x sin x cos x dx

Solution: Using the double angle identity sin(2x) = 2 sin x cos x, we have that: Z Z 1 x sin x cos x dx = x sin(2x) dx 2 Using direct substitution with t = 2x, and dt = 2 dx, we get: Z Z 1 1 x sin(2x) dx = t sin t dt 2 8 Using integration by parts with u = t, du = dt, and dv = sin t dt, v = − cos t, we get: Z Z 1 1 1 1 1 t sin t dt = − t cos t + cos t dt = − t cos t + sin t + C 8 8 8 8 8 Therefore, Z

25)

Z

1 1 x sin x cos x dx = − x cos(2x) + sin(2x) + C 4 8

(1 + cos θ)2 dθ

Solution: Z Z 2 (1 + cos θ) dθ = (1 + 2 cos θ + cos2 θ) dθ Z Z Z = dθ + 2 cos θ dθ + cos2 θ dθ  Z  1 + cos(2θ) dθ = θ + 2 sin θ + 2 θ sin(2θ) = θ + 2 sin θ + + +C 2 4 Z 1 3 ⇒ (1 + cos θ)2 dθ = θ + 2 sin θ + sin(2θ) + C 2 4

26)

Z



1 dx 4x − x2

Page 12 of 22

(using half-angle formula)

MATH 105 921

Solutions to Integration Exercises

Solution: Completing the square yields 4x − x2 = 4 − (x − 2)2 . Using direct substitution with u = x − 2, and du = dx, we get: Z Z 1 1 √ √ dx = du 4x − x2 4 − u2 u Using inverse trigonometric substitution with u = 2 sin t, that is, t = arcsin , and 2 du = 2 cos t dt, we get: Z Z Z Z 2 cos t 2 cos t 1 √ p dt = dt = t + C du = dt = 2 cos t 4 − u2 4 − sin2 t   Z 1 x−2 √ ⇒ +C dx = arcsin 2 4x − x2 27)

Z

1

1 1

0

1 + x3

dx

1 −2 x 3 dx, so dx = 3 2 3x 3 du = 3(u − 1)2 du. When x = 0, u = 1 and when x = 1, u = 2. We have that: Z 2 Z 2 Z 1 3 1 3(u − 1)2 (3u − 6 + ) du du = 1 dx = u u 1 1 0 1 + x3 3 = ( u2 − 6u + 3 ln |u|) |21 2 3 3 = (6 − 12 + 3 ln 2) − ( − 6 + 3 ln 1) = − + 3 ln 2 2 2 Z 1 3 1 + 3 ln 2. ⇒ 1 dx = − 2 0 1 + x3 1

Solution: Using direct substitution with u = 1 + x 3 , and du =

28)

Z

1 dx x3 + x Solution: Using partial fractions, we have: 1 A Bx + C A(x2 + 1) + (Bx + C)x (A + B)x2 + Cx + A = + = = x3 + x x x2 + 1 x3 + x x3 + x So, A + B = 0, C = 0 and A = 1. So, B = −1 and we get: Z Z Z Z 1 x x 1 dx = dx − dx = ln |x| − dx 3 2 2 x +x x x +1 x +1

Page 13 of 22

MATH 105 921

Solutions to Integration Exercises

On the remaining integral, using direct substitution with u = x2 + 1 and du = 2x dx, we get: Z Z x 1 1 1 dx = du = ln |u| + C = ln(x2 + 1) + C 2 x +1 2u 2 2 Therefore, Z

x3

1 1 dx = ln |x| − ln(x2 + 1) + C +x 2

Remark: This involves partial fractions with non-linear factors, which you are not required to master in this course! 29)

Z

ln(1 + t) dt Solution: Using direct substitution with s = 1 + t, and ds = dt, we have that: Z Z ln(1 + t) dt = ln s ds 1 ds, and dv = ds, v = s, we get: s Z Z Z 1 ds = s ln s − s + C ln s ds = s ln s − s ds = s ln s − s

Using integration by parts with u = ln s, du =

Therefore, Z

30)

Z

ln(1 + t) dt = (1 + t) ln(1 + t) − (1 + t) + C

sin(3x) cos(5x) dx Solution: Using the trigonometric identity that sin a cos b = 12 (sin(a+b)+sin(a−b)), we get: Z Z 1 1 1 (sin(8x) + sin(−2x)) dx = − cos(8x) + cos(−2x) + C sin(3x) cos(5x) dx = 2 16 4 Remark: You are not required to memorize any sum to product or product to sum trigonometric identities!

Page 14 of 22

MATH 105 921 31)

Z

k2

Solutions to Integration Exercises

1 dk − 6k + 9

Solution: By completing the square, we observe that k 2 − 6k + 9 = (k − 3)2 . So, using direct substitution with u = k − 3, and du = dk, we have that: Z Z Z 1 1 1 1 dk = du = − dk = +C k 2 − 6k + 9 (k − 3)2 u2 u Z 1 1 dk = − +C ⇒ 2 k − 6k + 9 k−3 32)

Z

1 dx sec x − 1 1 , we get: cos x  Z Z Z  Z 1 1 cos x 1 −1 + dx = −x + dx = dx = dx sec x − 1 1 − cos x 1 − cos x 1 − cos x x , so dt = For the remaining integral, use a direct substitution with t = tan 2       √ x 1 1 x x dx. We also can compute that sec = t2 + 1, cos = √ sec2 2 2 2 2 t2 + 1 x t 2 dt. Using double angle formula, we get: =√ and sin . So, dx = 2 2 t +1 t2 + 1

Solution: Since sec x =

2

cos x = cos

x 2

− sin

2

x 2

=

1 t2 1 − t2 − = t2 + 1 t2 + 1 t2 + 1

So, after the substitution, we get:   Z Z Z 2 1 1 1 dt = dt dx = 2 2 1−t 1 − cos x t2 1 − t2 +1 t + 1 x 1 = − + C = − cot +C t 2

Therefore,

Z

x 1 +C dx = −x − cot sec x − 1 2

Remark: This is an extremely challenging question; do not panic if you do not know how to solve it!

Page 15 of 22

MATH 105 921 33)

Z

1

Solutions to Integration Exercises

2 dx +1

e−x

0

Solution: Using direct substitution with u = e−x + 1, and du = −e−x dx, that is 1 dx = − u−1 du. When x = 0, u = 2, and when x = 1, u = e−1 + 1. So, we get: Z

1 0

2 dx = e−x + 1

Z

e−1 +1 2

−2 du u(u − 1)

Using partial fraction, we get: A B A(u − 1) + Bu (A + B)s + (−A) −2 = + = = u(u − 1) u u−1 u(u − 1) u(u − 1) Thus, A + B = 0 and −A = −2. So, A = 2, and B = −2. Thus, we have that: Z

e−1 +1 2

−2 du = u(u − 1)

Z

e−1 +1 2

2 du − u

Z

e−1 +1 2

2 du u−1

Therefore, Z

34)

Z

e−1 +1 2

c2

−2 −1 du = (2 ln |u| − 2 ln |u − 1|) |e2 +1 = (2 ln(e−1 + 1) + 2) − (2 ln 2 − 0) u(u − 1) Z 2 ⇒ dx = 2 ln(e−1 + 1) + 2 − 2 ln 2. −x e +1 1 dc − 6c + 10

Solution: Completing the square yields c2 − 6c + 10 = (c − 3)2 + 1. So, using direct substitution with u = c − 3, and du = dc, we have that: Z Z Z 1 1 1 dc = dc = du = arctan u + C 2 2 2 c − 6c + 10 (c − 3) + 1 u +1 Z 1 ⇒ dc = arctan(c − 3) + C 2 c − 6c + 10

35)

Z

f (x)f ′ (x) dx

Page 16 of 22

MATH 105 921

Solutions to Integration Exercises

Solution: Using direct substitution with u = f (x), and du = f ′ (x) dx, we get: Z Z 1 ′ f (x)f (x) dx = u du = u2 + C 2 Z 1 ⇒ f (x)f ′ (x) dx = (f (x))2 + C 2

36)

Z

x2

1 dx + 4x + 5

Solution: Completing the square, we get x2 + 4x + 5 = (x + 2)2 + 1. Using direct substitution with u = x + 2 and du = dx, we get: Z Z Z 1 1 1 dx = dx = du = arctan(u) + C 2 2 2 x + 4x + 5 (x + 2) + 1 u +1 Z 1 ⇒ dx = arctan(x + 2) + C x2 + 4x + 5

37)

Z

2 0

1 dx (3 + 5x)2

Solution: Using direct substitution with u = 3 + 5x, and du = 5 dx, when x = 0, then u = 3, and when x = 2, u =...


Similar Free PDFs