Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae PDF

Title Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae
Course Calculus IA
Institution 香港科技大學
Pages 4
File Size 232 KB
File Type PDF
Total Downloads 65
Total Views 126

Summary

Einstein Kong...


Description

Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae

(A)

Compound Angle Formulae

1) Prove the Identity cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 .

Page | 1

(𝐾𝐿)2 = 2 − 2(cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)

…..(1)

By Cosine Law, we have (𝐾𝐿)2 = (𝑂𝐿)2 + (𝑂𝐾)2 + 2(𝑂𝐿)(𝑂𝐾) cos(𝛼 − 𝛽)

Proof :

(𝐾𝐿)2 = 1 + 1 − 2 cos(𝛼 − 𝛽)

(𝐾𝐿)2 = 2 − 2 cos(𝛼 − 𝛽) From (1) and (2) :

….(2)

(𝐾𝐿)2 = (𝐾𝐿)2

2 − 2(cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽) = 2 − 2 cos(𝛼 − 𝛽 )

cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 (QED) 2)

Prove that

Proof :

cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

cos(𝛼 + 𝛽) = cos(𝛼 − (−𝛽))

= cos 𝛼 cos(−𝛽) + sin 𝛼 sin(−𝛽)

= cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

𝐿 (𝑎, 𝑏) = (cos 𝛽 , sin 𝛽)

𝐾 (𝑥, 𝑦) = (cos 𝛼 , sin 𝛼) By the formula of Distance between two points (𝐾𝐿)2

= (cos 𝛽 − cos 𝛼

)2

+ (sin 𝛽 − sin 𝛼)

2

= (cos 𝛽)2 − 2 cos 𝛼 cos 𝛽 + (cos 𝛼)2 + (sin 𝛽)2 − 2 sin 𝛼 sin 𝛽 + (sin 𝛼)2

3)

Prove that sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵

Proof :

𝜋

As 𝑠𝑖𝑛(𝐴 – 𝐵) = cos ( 2 − (𝐴 − 𝐵)) = cos ((

𝜋 − 𝐴) + 𝐵) 2

𝜋 𝜋 = cos ( − 𝐴) cos 𝐵 − sin ( − 𝐴) sin 𝐵 2 2 = 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵

Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae

4)

Prove that

𝑡𝑎𝑛(𝐴 − 𝐵) = sin(𝐴 – 𝐵)

Proof : 𝑡𝑎𝑛(𝐴 − 𝐵) = cos (𝐴−𝐵) =

𝑡𝑎𝑛𝐴 − 𝑡𝑎𝑛𝐵 1 + 𝑡𝑎𝑛𝐴𝑡𝑎𝑛𝐵

𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵

𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 + 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵

𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 𝑡𝑎𝑛𝐴 − 𝑡𝑎𝑛𝐵 = 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 + 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵 = 1 + 𝑡𝑎𝑛𝐴𝑡𝑎𝑛𝐵 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵

5)

To Sum up, we have the following are important trigonometric relationships:

Page | 2

Example 1 Using the t-ratios of 30° and 45°, evaluate sin 75° Solution: 𝑠𝑖𝑛 75° = 𝑠𝑖𝑛 (45° + 30°) = 𝑠𝑖𝑛 45° 𝑐𝑜𝑠 30° + 𝑐𝑜𝑠 45° 𝑠𝑖𝑛 30° √2

√3

= ( )( 2

2

√2

1

) + ( )( ) = 2

2

√6+√2 4

Example 2 From the formula of 𝑠𝑖𝑛 (𝛼 + 𝛽) deduce the formulae of 𝑐𝑜𝑠 (𝛼 + 𝛽) and 𝑐𝑜𝑠 (𝛼 − 𝛽). Solution:

𝑐𝑜𝑠(𝐴 − 𝐵) = 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 + 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵

𝑠𝑖𝑛(𝐴 − 𝐵) = 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵 𝑡𝑎𝑛𝐴 − 𝑡𝑎𝑛𝐵 𝑡𝑎𝑛(𝐴 − 𝐵) = 1 + 𝑡𝑎𝑛𝐴𝑡𝑎𝑛𝐵

To find 𝑠𝑖𝑛(𝐴 + 𝐵), 𝑐𝑜𝑠(𝐴 + 𝐵) and 𝑡𝑎𝑛(𝐴 + 𝐵), just change the - signs in the above identities to + signs and vice-versa: 𝑠𝑖𝑛(𝐴 + 𝐵) = 𝑠𝑖𝑛 𝐴 𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵 𝑐𝑜𝑠(𝐴 + 𝐵) = 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 − 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵 𝑡𝑎𝑛𝐴 + 𝑡𝑎𝑛𝐵 𝑡𝑎𝑛(𝐴 + 𝐵) = 1 − 𝑡𝑎𝑛𝐴𝑡𝑎𝑛𝐵

We know that, 𝑠𝑖𝑛 (𝛼 + 𝛽) = 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 …….. (i)

Replacing α by (90° + 𝛼) on both sides of (i) we get, sin(90° + 𝛼 + 𝛽) = sin{(90° + 𝛼 ) + 𝛽}

= 𝑠𝑖𝑛 (90° + 𝛼) 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 ( 90° + 𝛼) 𝑠𝑖𝑛 𝛽, [Applying the formula of 𝑠𝑖𝑛 (𝛼 + 𝛽)]

⇒ sin{90° + (𝛼 + 𝛽)} = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽,

[since 𝑠𝑖𝑛 (90° + 𝛼) = 𝑐𝑜𝑠 𝛼 and 𝑐𝑜𝑠 (90° + 𝛼) = − 𝑠𝑖𝑛 𝛼] ⇒ 𝑐𝑜𝑠 (𝛼 + 𝛽) = 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 …….. (ii)

Again, replacing β by (- β) on both sides of (ii) we get, 𝑐𝑜𝑠 (𝛼 − 𝛽) = 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 (− 𝛽) − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 (− 𝛽) ⇒ cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽,

[since 𝑐𝑜𝑠 (− 𝛽) = 𝑐𝑜𝑠 𝛽 and 𝑠𝑖𝑛 (− 𝛽) = − 𝑠𝑖𝑛 𝛽]

Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae

(B)

𝑠𝑖𝑛2𝐴 = 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐴

so: similarly:

cos 2𝐴 = 𝑐𝑜𝑠 2 𝐴 − 𝑠𝑖𝑛2 𝐴

Replacing 𝑐𝑜𝑠2 𝐴 by 1 − 𝑠𝑖𝑛2 𝐴 in the above formula gives: 𝑐𝑜𝑠2𝐴 = 1 − 2𝑠𝑖𝑛2 𝐴

Replacing 𝑠𝑖𝑛2 𝐴 by 1 − 𝑐𝑜𝑠2 𝐴 gives: 𝑐𝑜𝑠2𝐴 = 2𝑐𝑜𝑠2 𝐴 − 1 It can also be shown that: 𝑡𝑎𝑛2𝐴 =

2 𝑡𝑎𝑛𝐴 1 − 𝑡𝑎𝑛2 𝐴

𝑠𝑖𝑛2𝐴 = 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐴

cos 2𝐴 = 𝑐𝑜𝑠 𝐴 − 𝑠𝑖𝑛2 𝐴 = 1 − 2𝑠𝑖𝑛2 𝐴 = 2𝑐𝑜𝑠 2 𝐴 − 1 2

𝑡𝑎𝑛2𝐴 =

(C)

𝑐𝑜𝑠(𝐴 + 𝐵) + 𝑐𝑜𝑠(𝐴 − 𝐵) = 2 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵

Double Angle Formulae

𝑠𝑖𝑛(𝐴 + 𝐵) = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 Replacing B by A in the above formula becomes: 𝑠𝑖𝑛(2𝐴) = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐴 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐴

2 𝑡𝑎𝑛𝐴 1 − 𝑡𝑎𝑛2 𝐴

Product to Sum Formulae

Sometimes it is useful to be able to write a product of trigonometric functions as a sum of simpler trigonometric functions (this might make integration easier, for example).

Now, 𝑐𝑜𝑠(𝐴 + 𝐵) = 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 − 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵 and 𝑐𝑜𝑠(𝐴 − 𝐵) = 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 + 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵 Adding these two:

Page | 3

Subtracting one from the other: 𝑐𝑜𝑠(𝐴 − 𝐵 ) − 𝑐𝑜𝑠(𝐴 + 𝐵) = 2 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵

Similar formula can be obtained using the expansion of 𝑠𝑖𝑛(𝐴 + 𝐵). 𝑠𝑖𝑛(𝐴 + 𝐵) = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 𝑠𝑖𝑛(𝐴 − 𝐵 ) = 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵 By adding and subtracting these two: have

And

𝑠𝑖𝑛(𝐴 + 𝐵) + 𝑠𝑖𝑛(𝐴 − 𝐵) = 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵

𝑠𝑖𝑛(𝐴 + 𝐵) − 𝑠𝑖𝑛(𝐴 − 𝐵) = 2 𝑠𝑖𝑛𝐵 𝑐𝑜𝑠𝐴

2 𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 = 𝑐𝑜𝑠(𝐴 + 𝐵) + 𝑐𝑜𝑠(𝐴 − 𝐵) 2 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵 = 𝑐𝑜𝑠(𝐴 − 𝐵 ) − 𝑐𝑜𝑠(𝐴 + 𝐵) 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 = 𝑠𝑖𝑛(𝐴 + 𝐵) + 𝑠𝑖𝑛(𝐴 − 𝐵) 2 𝑠𝑖𝑛𝐵 𝑐𝑜𝑠𝐴 = 𝑠𝑖𝑛(𝐴 + 𝐵) − 𝑠𝑖𝑛(𝐴 − 𝐵)

(D)

Sum to Product Formulae

Now we let 𝐴 =

𝛼+𝛽 2

and 𝐵 =

𝛼−𝛽 2

,

we have 𝐴 + 𝐵 = 𝛼 and 𝐴 − 𝐵 = 𝛽 , 𝛼−𝛽 𝛼+𝛽 𝑐𝑜𝑠 2 2 𝛼−𝛽 𝛼+𝛽 𝑐𝑜𝑠 𝑠𝑖𝑛(𝛼) − 𝑠𝑖𝑛(𝛽) = 2 𝑠𝑖𝑛 2 2 𝛼+𝛽 𝛼−𝛽 𝑐𝑜𝑠 𝑐𝑜𝑠(𝛼) + 𝑐𝑜𝑠(𝛽) = 2 𝑐𝑜𝑠 2 2 𝜶+𝜷 𝜶−𝜷 𝒔𝒊𝒏 𝒄𝒐𝒔(𝜶) − 𝒄𝒐𝒔(𝜷) = −𝟐 𝒔𝒊𝒏 𝟐 𝟐

𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛽) = 2 𝑠𝑖𝑛

Lecture Notes for Math 1012 (Lecture 2) Compound Angle Formulae

(E)

Exerceis :

Q1) Solution:

Solve 𝑠𝑖𝑛(6𝑥) + 𝑠𝑖𝑛(4𝑥) = 0 , 𝑥 ∈ [0, 2𝜋) . Using the first sum to product identity we can replace 𝑠𝑖𝑛(6𝑥) + 𝑠𝑖𝑛(4𝑥) with 2𝑠𝑖𝑛(5𝑥)𝑐𝑜𝑠(𝑥) to get 2 sin(5𝑥) cos(𝑥) = 0. We set each factor to 0 and solve the resulting simple equation. 𝑠𝑖𝑛(5𝑥) = 0 has solutions 0 and

[0,

2𝜋 5

).

𝑐𝑜𝑠(𝑥) = 0 has solutions [0, 2𝜋). The solutions are 𝑥 = 0,

Q2)

Solution:

𝜋

5

𝜋

2

and

,

𝜋 2

𝜋

5

in the interval

3𝜋

in the interval

2

and

3𝜋 2

.

Solve 𝑠𝑖𝑛(2𝑥) + 4𝑐𝑜𝑠(𝑥) = 0 for x in the interval [0,2𝜋). Replace 𝑠𝑖𝑛(2𝑥) with 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑥) to get 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑥) + 4𝑐𝑜𝑠(𝑥) = 0. Factor the left side to get 2𝑐𝑜𝑠(𝑥)(𝑠𝑖𝑛(𝑥) + 2) = 0. Now set each factor to 0. cos(𝑥) = 0 has solutions

𝜋

2

and

3𝜋 2

.

Page | 4

𝑠𝑖𝑛(𝑥) + 2 = 0 or 𝑠𝑖𝑛(𝑥) = −2 has no solutions. The solutions are 𝑥 =

𝜋

2

,

3𝜋 2

.

Here is the graph 𝑦 = 𝑠𝑖𝑛(2𝑥) + 4𝑐𝑜𝑠(𝑥) which shows the x-intercepts in [0,2𝜋). These x-intercepts are the solutions to the equation....


Similar Free PDFs