Limit and continuity pdf lecture notes PDF

Title Limit and continuity pdf lecture notes
Author Dima Alnizami
Course Calculus I 
Institution Lakehead University
Pages 163
File Size 3.3 MB
File Type PDF
Total Downloads 39
Total Views 144

Summary

from class lecture, weeks 1 - 5 study this for exam midterm...


Description

Lecture Notes for math111: Calculus I.

Dr. Vitaly A. Shneidman

New Jersey Institute of Technology

Fall, 2013

1

Introduction y = f (x)

Limits & Continuity Rates of change and tangents to curves

2

Average rate of change ∆y ∆x

=

f (x2) − f (x1) x2 − x1

(1)

Equation for the secant line: ∆y (x − x1) + f (x1) ∆x Tangent - secant in the limit x2 → x1 (Or, ∆x → 0). Slope of tangent Y =

f ′ (x1) ≡

∆y , ∆x → 0 ∆x

(2)

(notation f ′ is not yet in the book, but will appear later...). Equation of tangent line: Y = f ′ (x1) (x − x1) + f (x1) 3

Example (Galileo): t instead of x or x1, h instead of ∆x. 1 y(t) = at2 2 where a is a constant (”acceleration”). Secant (finite h) ∆y = y(t+h)−y (t) =

 i 1 h 1  a (t + h)2 − t2 = a 2th + h2 2 2

∆y ∆y = a(t + h/2) = h ∆t Tangent (h → 0): y ′(t) = at (known as ”instantaneous velocity” or ”instantaneous 4

rate of change”). Returning to math notations ′ 2 = 2x x



(3)

Example: y(x) = x3 Use a3 −b3 = (a−b)(a2 +ab+b2) with a = x+h, b = x. Slope of secant (A.R.C.), finite h ≡ ∆x: h i 3 3 2 2 ∆y = y(x+h)−y (x) = (x+h) −x = h (x + h) + x(x + h) + x =

= h(3x2 + 3xh + h2)

∆y ∆y = 3x2 + 3xh + h2 = h ∆x Slope of tangent (I.R.C.) h → 0: x3



′

= 3x2

(4)

5

Example: y(x) =

√ x ∆y

∆y

√ √ x+h− x h ∆x = h √ √ √ √ 1 x+h− x x+h+ x = ·√ √ √ =√ x+h+ x x+h+ x h A.R.C. =

=

Now, no problem h → 0:

√ I.R.C. = 1/2 x

or √ ′

x

1 = √ 2 x

(5)

6

Continuity and Limits

-

-

-

-

Continuous (left) and discontinuous (right) functions

Intermediate value Theorem 11, p.99

7

Limit of a function Assume don’t know f (x0) but know f (x) for any x close to x0 . Example: H L

-

-

-

-

y (0) not defined. Can define y (0) = a, with any a. Why a = 1 is the ”best”? 8

Limit: lim f (x) = L

Example:

x→x0

x 2 − a2 = lim x + a = 2a lim x→a x − a x→a Functions with no limit as x → 0: step-function, 1/x, sin(1/x)

9

Limit Laws - Theorem 1, p.68. If f , g have limits L & M as x → c. Then, lim (f ± g) = L ± M , lim (f · g) = L · M , etc.

x→c

(6)

x→c lim (f n) = Ln , lim (f 1/n) = L1/n x→c x→c

(7)

”Dull functions” limx→c f (x) = f (c). Example q √ lim 4x2 − 3 = 13 x→−2

Example: any polynomial limx→c Pn(x) = Pn(c)

10

Limits of rational functions P (x)/Q(x) as x → c. If Q(c) 6= 0 - ”dull”, limit R(c)/Q(c). If Q(c) = 0 check P (c): if P (c) 6= 0 - no limit; If P (c) = 0 try to simplify. Example: x3 + x − 2 (x − 1)(x2 + x + 2) = lim =4 lim x→1 x→1 x2 − x x(x − 1) Other functions with limits of type ”0/0”. Example: lim

x→0

q

x 2 + a2 − a = lim x→0 x2 q

q

q 2 2 x + a − a x 2 + a2 + a ·q = x2 2 2

x +a +a

= limx→0 1/( x2 + a2 + a) = 1/2a

11

”Sandwich theorem” : Let f (x) ≤ g (x) and lim f (x) = lim g(x) = L .

x→c

x→c

IF f (x) ≤ u(x) ≤ g(x) THEN lim u(x) = L

x→c

12

Limit (sin x)/x as x → 0

6 AOC = x (in radians !)

S△OAC = 21 sin x Ssector OAC = 2x S△OAB = 21 tan x Thus,

sin x < x < tan x , 0 < x <

π 2

(8)

Divide by sin x and take the inverse, changing ””: 1 > sinx x > cos x. Since cos 0 = 1, from ”S.T.” sin x =1 x→0 x lim

(9) 13

Examples (discussed in class): tan x =1 x→0 x sin kx lim =k x→0 x 1 − cos x =0 lim x→0 x 1 − cos x 1 = lim x→0 2 x2 lim

(10) (11) (12) (13)

tan x − sin x 1 = x→0 x3 2 lim

14

One-sided limits (skip definition on p. 87)  ¤

-

-

-

-

-

-

Functions with 1-sided limits. x x = 1 , lim = −1 , f (0) =? lim x→0− |x| x→0+ |x| lim

x→−1+

q

1 − x2 = 0 ,

lim

x→1−

q

1 − x2 = 0 15

Theorem 6, p.86: Limit of f (x) for x → c exists if and only if L.H. and R.H. limits at x → c− , c+ exist and have the same value (in which case, this also will be the value of the limit of f ) .

16

-

-

-

-

-

Tricky functions with 2- or 1-sided limits. lim x sin

x→0

√ 1 1 x sin = 0 = 0 , lim x x x→0+

17

Continuity at a point x = c (p. 93, or Continuity Test, p. 94): f (c) = lim f (x) x→c

for an interior point (and similarly for an endpoint with corresponding one-sided limit). Right-continuous at a point x = c : f (c) = lim f (x) x→c+

Left-continuous at a point x = c : f (c) = lim f (x) x→c−

18

d t

-

-

right-continuous integer ”floor” function

19

Continuous Function (CF) CF on an interval CF Theorem 8, p. 95 f ± g , etc.

Inverse of a CF is a CF: e.g. ex and ln x Composits of CF are CFs: e.g. Theorems 9, 10 on p. 97

q

f (x) , f (x) = 1 − x2

Continuous extension to a point: e.g. F (x) = sin x /x , x = 6 1; F (0) = 1 20

Limits involving ∞

x → ±∞ (skip p. 104) +

+

-

-

-

-

Limits of a rational function with the same power of denom. and numerator. Horizontal asymptote(s) - lim(s) of f (x) as x → ±∞ 21

Non-algebraic functions x3 x , x sin 1 , etc. , e x |x|3 + 1

-

-

Oblique and vertical asymptotes + + -

-

-

-

22

Derivatives f (x + h) − f (x) = h→0 h f (z) − f (x) = lim z→x z−x

f ′(x) = lim

If the limit exists, this is derivative a.k.a:

(14) (15) at a point x,

• slope of the graph at x • slope of the tangent to the graph at x 23

• rate of change of f with respect to x

Derivative as a function x is not ”frozen” anymore; can consider a new function g(x) = f ′(x) Other notations f ′(x) = y ′ =

df d dy f (x) = . . . = = dx dx dx

df  g(a) = dx x=a 

24

Examples:

or

d 1 x−z 1/z − 1/x 1 = lim = lim = − z→x z→x zx(z − x) z−x x2 dx x d 1 1 =− 2 x dx x

(16)

1/z 2 − 1/x2 x2 − z 2 d 1 1 = lim = lim = −2 z→x z→x z 2x2(z − x) dx x2 z−x x3 d x d 1 = 1+ dx x−1 dx x − 1 



=0−

1 (x − 1)2 25

One-sided derivatives From right: f (x + h) − f (x) f (z) − f (x) = lim z−x h h→0+ z→x+

f ′(x) = lim From left:

f (x + h) − f (x) f (z) − f (x) = lim h z−x h→0− z→x−

f ′(x) = lim

Example: |x|′ = 1 for x > 0, = −1 for x < 0 and is not defined at x = 0 where only r.-h. or l.-h. derivatives exist. (This was a ”corner”;qother cases with no derivative may include ”cusp” as |x|, vertical tangent

as x1/3 and a discontinuity of the original function as |x|/x. Graphics in class.) 26

Theorem 3.1. If f (x) has a derivative at x = c it is continuous at x = c. Consider identity f (c + h) − f (c) ·h h and take the limit of both sides as h → 0. Note: Converse is false, e.g. |x|. f (c + h) = f (c) +

27

Differentiation rules

(af (x) + bg (x))′ = af ′ + bg ′

(17)

Proof. Consider af (z) + bg (z) − af (x) − bg (x) a[f (z) − f (x)] + b[g(z) − g (x)] ≡ z−x z−x and take the limit z → x.

 df (z)  ′  (f (ax)) = a dz 

(18) z=ax

Example: (sin(ωx))′ = ω cos(ωx) 28

[f (x) · g (x)]′ = f ′g + f g ′

(19)

Proof. Consider f (z )g(z ) − f (x)g(x) [f (z) − f (x)]g(z) + f (x)[g(z) − g(x)] ≡ z−x z−x and take the limit z → x. Example: (x · x)′ = 1 · x + x · 1 = 2x 29

1 !′ f

f′ = −f 2

(20)

Proof. Consider 1/f (z) − 1/f (x) f (x) − f (z) ≡ z−x f (z)f (x)(z − x) and take the limit z → x. Example: (1/x)′ = −1/x2

f g

!′

f ′ · g − g′ · f = g2

(21) 30

Derivatives of elementary functions (xn)′ = nxn−1 , any n

(22)

(sin x)′ = cos x , (cos x)′ = − sin x

(23)

  x ′ = ex , x ′ = ex ln a ′ = ax · ln a (e ) (a )

(24)

(ln x)′ = 1/x

(25)

31

Trigonometric functions Earlier: (sin x)′ = cos x , (cos x)′ = − sin x and (tan x)′ = 1/ cos2 x

(26)

Other basic examples: 1/ cos x , 1/ sin x , cot x , . . . Simple harmonic motion: y(t) = A sin(ωt) ,

dy = Aω cos(ωt) dt

d2y = −Aω 2 sin(ωt) ≡ −ω 2y(t) 2 dt

(27) (28)

32

Chain rule (f (g (x)))′ =

df dg · ≡ (f (g))′ · (g(x))′ dg dx

(29)

”Proof”. Let u = g(z) , v = g(x) df dg f (u) − f (v) f (u) − f (v) u − v = lim · = · z→x z→x z−x u−v z−x dg dx

(f (g (x)))′ = lim

Simple example: (f (ax))′ = af ′(ax)

33

du dx du (sin u(x))′ = [cos u(x)] dx du (eu)′ = eu dx 1 du (ln u)′ = u dx (u(x)n)′ = nun−1

q

x2 + 1

′

(30) (31) (32) (33)

1 = q · (2x) 2 2 x +1 34

Example 

2 e−x

′

2

= −2xe−x

I- M -

-

-

-

I- M

-

35

Example: ′ 2 sin(x ) = 2x cos(x2)



I M I M -

-

36

Example 

−x e−e

′

−x  −x −e · e =e

H-ã- L H- - ã- L

-

-

37

Implicit differentiation Let F (x, y) = 0 where F is a simple known function (e.g. F = x − y 2 describing a parabola). Then F x′ + Fy′

dy =0 dx

(34)

and dy = −Fx′ /Fy′ dx

38

Tangent at (x0 , y0) dy  Y = y0 + (x − x0) dx x=x0 

(35)

Normal:

Y = y0 −

dy  dx x=x0 

!−1

(x − x0)

(36)

39

Parabola: y 2 = x , 2y

dy dx

=1,

dy 1 = 2y dx

Tangent and normal: Y = y0 +

1 (x − x0) , Y = y0 − (2y0)(x − x0) 2y0

-



-

-

-

40

Ellipse: dy (x/a)2+(y/b)2 = 1 , 2x/a2+2y/b2 =0, dx

dy x b2 =− 2 ya dx

Tangent and normal: y0 a2 x 0 b2 (x − x0) (x − x0) , Y = y0 + Y = y0 − x 0 b2 y0 a2

+



-

-

41

Hyperbola: x2 − y 2 = 1 , 2x − 2y

dy dx

=0,

dy x = y dx

Tangent and normal: y x Y = y0 + 0 (x − x0) , Y = y0 − 0 (x − x0) x0 y0

-



-

-

-

-

-

42

Inverse Functions Consider y = f (x) and solve for x = F (y) (select only one branch, if several). Then, swap y and x. Then, y = F (x) , with (f (F (x))) = x is the inverse function (F ≡ f −1 in textbook). Examples: f = x2 , F = sin x , F = arcsin x, etc.

√ x, f = ex , F = ln x, f =

Note: range of f becomes the domain of F , but the domain of f becomes range of F for monotonic f only. Examples: ex (monotonic) and x2 or sin x (non-monotonic). 43

Note (f (F (x))) = x for all x in the domain of F , while F (f (x)) = x in the entire domain of f for monotonic f only. E.g.: eln x = x for 0 < x < ∞ , and ln (ex) = x for −∞ < x < ∞ sin(arcsin x) = x for − 1 ≤ x ≤ 1 , but arcsin(sin x) 6= x , for |x| > π/2

44

Primitive example: f = x − 1 , F = x + 1

-

-

-

+

-

-

45

Primitive example: f = x/2 + 1 , F = 2x − 2

+ -

f (F (x)) = 12 · (2x − 2) + 1 = x

-

-

-

46

Example: f = x2 , F =

√ x 1 (f )′ = 2x , (F )′ = 2√ x

Consider (x0 = 2 , y0 = 4) , (X0 = 4, Y0 = 2): (f )′ = 4 , (F )′ = 1 4

47

Example: f = x2 − 2 , F =

√ x+2 (f )′ = 2x , (F )′ = √ 1

2 x+2

+

Consider (x0 = 3 , y0 = 7) , (X0 = 7, Y0 = 3): (f )′ = 6 , (F )′ = 1 6

-

-

48

Example: f = ex , F = ln x

H L H L

-

-

49

Logarithm y = ln x ey = x ey · y ′ = 1 1 1 y′ = y = e x

50

Example: f = sin x , F = arcsin x

H L -

-

-

-

H L

-

-

51

arcsin y = arcsin x sin y = x (cos y) · y ′ = 1 y′ = =q

1 = cos y

1 1 − sin2 y

=q

1 1 − x2

52

Example: f = tan x , F = arctan x

H L -

-

H L

-

-

53

arctan y = arctan x tan y = x (1/ cos2 y) · y ′ = 1 y′ = = cos2 y =

1 = 1/ cos2 y

1 1 = tan2 y + 1 x2 + 1

54

General y = F (x) f (y) = x df · y′ = 1 dy    1 dF  ′ = y ≡  df  dx  dy y=F (x)

55

Logarithmic functions and differentiation (ln u(x))′ =

1 · (u)′ u

Examples

(ln bx)′ =

(ln |x|)′ =

1 b = bx x

1 1 · (|x|)′ = , x 6= 0 x |x| 56

Recall: ax = ex ln a , loga x =

ln x , a > 0 , a 6= 1 ln a

(37)

  x ′ = ex ln a ′ = ax · ln a (a )

(loga x)′ =

1 x ln a

  n ′ = en ln x ′ = n n ln x (x ) e = nxn−1

x

57

    x ′ = ex ln x ′ = ex ln x ln x + x = xx(ln x + 1) (x )

x

Remarkable limit: lim (1 + x)1/x = e

x→0

(38)

58

Logarithmic differentiation Let y=

P (x)Q(x) R(x)

ln y = ln P + ln Q − ln R (Q)′ (R)′ (P )′ ′ + − y /y = P

Q

R

P (x)Q(x) (P )′ (Q)′ (R)′ y′ = + · − P R(x) Q R "

#

59

Inverse trigonometric functions (arcsin x)′ = q

1

, |x| < 1

(39)

1 , −∞ < x < ∞ (arctan x)′ = 2 x +1

(40)

1 − x2

π −arctan x. Now, arccos x = π2 −arcsin x and cot−1 x = 2 Thus

(arccos x)′ = − q

′ −1 cot x = −



1

, |x| < 1

(41)

1 , −∞ < x < ∞ x2 + 1

(42)

1 − x2

60

sec−1(x) = arccos

1

1 , csc−1(x) = arcsin x

x   ′ −1 1 ′ 1 −1 · 2 sec (x) = arccos = −q x 1 − (1/x)2 x 

=

1

q

|x| x2 − 1

, |x| > 1

  ′ 1 ′ −1 csc (x) = arcsin =q



x

=−

1

q

|x|

x2 − 1

−1 2 1 − (1/x)2 x 1

·

, |x| > 1 61

Related rates Suggested notations: V - volume, A - area, L - length/distance, r , R - radii, y Y, h, H - vertical position, x, X -horizontal position, v, V velocity, t - time Sphere: V=

4 3 πR , A = 4πR2 3

(43)

1 Abase · h 3

(44)

Cone: V=

62

Circle:

A = πr 2

dA/dt = 2πr · dr/dt: -

-

-

-

63

Sphere:

V = 43 πr 3 dV = 4πr 2 · dr = A · dr dt dt dt -

-

-

-

64

Cone:

1 πr 2(h) · h = V =3

 2 V h 1 = 3 π R(H) H · h = H03 · h3 dV = V0 · 3h2 dh = A(h) · dh dt dt dt H3

65

”Coffee maker” :

1 + dV2 = 0 V1 + V2 = const , dV dt dt

dV1 dh 2 dt = πr (h) · dt dV2 2 dY dt = πR · dt

dY dh 1 = − 2 r 2(h) · R dt dt 66

An a(t) × b(t) rectangle: A = ab , P = 2(a + b) , D =

q

a 2 + b2

dA db da =a +b dt dt dt dP da db =2 + dt dt dt 



 da db dD 1 d  2 1 2 a +b = a +b = 2D dt dt D dt dt 



67

Distance between two moving points:

H

L

L= H

L

q

(x − X)2 + (y − Y )2

 1 d  dL = (x − X)2 + (y − Y )2 = dt 2L dt

1 dx dX dy dY = ) (x − X)( − ) + (y − Y )( − dt dt dt dt L 

 68

Police car: X ≡ 0, dY /dt = −V , y ≡ 0, dx/dt = v  dL 1 d  2 2 = x +Y = dt 2L dt

1 dx dY = x +Y dt L dt 

v=



=

1 (xv − Y V ) L

1 (L · dL/dt + Y V ) x

69

Angle with horizontal (X, Y = 0, L = x/ cos θ):

q

x2 + y 2 =

1 dθ dy dx 1 tan θ = y/x , x − y = dt cos2 θ dt x2 dt 

dθ dy dx 1 = 2 x −y dt L dt dt 





Balloon: x = const , dy/dt = V . Aircraft: y = const , dx/dt = −v .

70

+ H - L

-

Tangent line and error (for a parabola): Y (x) = y (a) + y ′(a)(x − a) y(x) − Y (x) = x2 − a2 − 2a(x − a) = (x − a)2 71

+

72

-

H L + H - L -

-

H

H L - - H - LL

-

-

73

Differential: dx - independent variable dy = y ′(x) dx

74

D

75

f (x + dx) ≃ f (x) + df = f (x) + f ′(x) · dx Examples (small x instead of dx; approximation only near x = 0): (1 + x)2 ≃ 1 + 2x

(45)

p

1 + x ≃ 1 + x/2

(47)

ex ≃ 1 + x

(49)

1/(1 + x) ≃ 1 − x

(1 + x)k ≃ 1 + kx ln(1 + x) ≃ x

(46) (48) (50)

76

-

77

H

L H

L

Absolute maximum: f (c) = M , f (x) ≤ M for every x in the domain of f . Theorem. On a closed domain [a, b] any continuous f (x) will have an absolute maximum.

78

Local maximum: f (c) = M , f (x) ≤ M for every x on some open interval containing c. Theorem. For any differentiable f (x) a local maximum will have a zero derivative: f (c) = M , (f (x))′x=c = 0

(51)

(but, the reverse can be false: e.g. x3)

79

Critical and end points:

• endpoint(s) • zero derivative • no derivative (e.g |x| or

q

|x|)

80

E.g.: critical point - no extrema:


Similar Free PDFs