M141 Summary sheet and Table of integral PDF

Title M141 Summary sheet and Table of integral
Author Eliott Van der we
Course Foundations Of Engineering Mathematics
Institution University of Wollongong
Pages 6
File Size 165.1 KB
File Type PDF
Total Downloads 80
Total Views 132

Summary

Formula sheet...


Description

TABLE OF INTEGRALS [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[13]

[14]

[15] [16]

[17]

[18] [19] [20]

[21]

[22]

[23]

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

xn dx =

1 xn+1 + c, n 6= −1 n+1

dx = ln |x| + c x ex dx = ex + c sin x dx = − cos x + c cos x dx = sin x + c tan x dx = ln | sec x| + c sec2 x dx = tan x + c cosec2 x dx = − cot x + c sinh x dx = cosh x + c cosh x dx = sinh x + c tanh x dx = ln(cosh x) + c

  b 1 n+1 ax + b − (ax + b) + c, n 6= −1, −2 n+2 a2 n+1   Z x2 1 1 dx = 3 (ax + b)2 − 2b(ax + b) + b2 ln |ax + b| + c ax + b a 2   Z x2 1 b2 dx = − 2b ln |ax + b| +c ax + b − (ax + b)2 ax + b a3   Z √ 2 (ax + b)5/2 b(ax + b)3/2 x ax + b dx = 2 +c − a 3 5 Z x 2ax − 4b√ √ ax + b + c dx = 3a2 ax + b   Z  √ax + b − √b  1 1   √  + c, b > 0 √ dx = √ ln  √ x ax + b b  ax + b + b  Z x dx √ = sin−1 +c 2 2 a a −x Z   dx 1 −1 x = +c tan a2 + x2 a a   Z 1 1  x + a  +c ln dx = 2a  x − a  a2 − x2   Z x + a 1 1 x   +c + 3 ln  dx = 2 2 4a x − a 2a (a − x2 ) (a2 − x2 )2   Z  a + √a2 − x2  1 1p 2   a − x2 dx = − ln  +c x  a  x Z x 1 1 dx = + Z

x(ax + b)n dx =

[24] [25]

[26]

[27] [28]

[29]

[30] [31] [32] [33] [34] [35]

[36]

[37] [38] [39] [40]

√ 2 2 a+ a −x    p  2 − x2 − a ln  dx = a +c  Z  p   x x  2 2 √ 1 + x ± a dx = ln +c x x2 ± a2   √ Z 1  a + x2 + a2  1 √ dx = − ln  +c x x2 + a2  a  x Z x 1 1 dx = ± 2 √ +c 2 a (x2 ± a2 )3/2 x ± a2 Z p   p 1 p 1   x2 ± a2 dx = x x2 ± a2 ± a2 ln x + x2 ± a2  + c 2 2   √ √ Z   p x2 + a2  a + x2 + a2  2 2 dx = x + a − a ln  +c   x x Z  1 1 ax − ln(b + keax ) + c, ab 6= 0 dx = ax ab b + ke Z 1 eax sin bx dx = 2 eax (a sin bx − b cos bx) + c a + b2 Z 1 eax cos bx dx = 2 eax (a cos bx + b sin bx) + c a + b2 Z Z 1 n−1 sinn x dx = − cos x sinn−1 x + sinn−2 x dx n n Z Z 1 n−1 cosn x dx = sin x cosn−1 x + cosn−2 x dx n n Z Z 1 tann x dx = tann−1 x − tann−2 x dx n−1 Z Z secn−2 x tan x n − 2 + secn−2 x dx secn x dx = n−1 n−1 Z Z n−1 sinm+1 x cosn−1 x m n + sinm x cosn−2 x dx sin x cos x dx = m+n m+n Z Z xn ex dx = xn ex − n xn−1 ex dx

Z √ 2 a − x2

Z

Z

xn sin x dx = −xn cos x + n n

n

x cos x dx = x sin x − n

Z

Z

xn−1 cos x dx

xn−1 sin x dx

MATH141 Formula Sheet Final Exam: Strand 1 Hyperbolic Functions Definition

dy

1 1 = ′ = f ′ (f −1 (x)) dx f (y) Parametric Differentiation If x = f (t) and y = g(t), then dx = f ′ (t) dt

ex − e−x sinh x = 2 ex + e−x cosh x = 2

and dy = g ′ (t) dt

and moreover, g ′ (t) dt g ′ (t) dy = ′ = ′ dx f (t) dt f (t)

Identity

n-th Derivative of y = f (x)

cosh2 x − sinh2 = 1

dn y dn y d (n−1) f (x) = f (n) (x) and = n dx dx dxn where n is a natural number.

Differentiation If y = f (x), then

Optimal values

dy = df (x) = f ′ (x) dx

and

dy = f ′ (x) dx

Rules for Basic Functions Differential

Derivative (mx + b)′ = m

d(mx + b) = m dx

(xr )′ = rxr−1 (ex )′ = ex 1 (ln x)′ = x (sin x)′ = cos x

d(xr ) = rxr−1 dx d(ex ) = ex dx 1 d(ln x) = dx x d(sin x) = cos x dx

(cos x)′ = − sin x

d(cos x) = − sin x dx

Rules for Function Operations Let f and g be functions and k be a constant. Derivative ′

in the other word,

Differential d(kf ) = k df d(f + g) = df + dg



(kf ) = kf (f + g)′ = f ′ + g ′ (f g )′ = f ′ g + f g ′  f ′ f′ f g′ = − 2 g g g

d(f g) = g df + f dg f  1 f = df − 2 dg d g g g df (g) = f ′ (g) dg

Chain Rule If y = f (z) and z = g(x), then dy = f ′ (z) dz = f ′ (z)g ′ (x) dx

• The function f (x) has a local maximum at x = a provided f ′ (a) = 0 and f ′′ (a) < 0; • The function f (x) has a local minimum at x = a provided f ′ (a) = 0 and f ′′ (a) > 0. Integration Definition • indefinite integral • definite integral Basic Rules

Z

Z

f (x) dx

b

f (x) dx

a

• scalar-multiple rule Z Z kf (x) dx = k f (x) dx where k is a constant.

• sum rule Z Z Z (f (x) + g(x)) dx = f (x) dx + g(x) dx • simple substitution Z f ′ (g (x))g ′ (x) dx = f (g(x)) + constant The Fundamental Theorem of Calculus Z b f (x) dx = F (b) − F (a) a

in the other word,

where dy = f ′ (g (x))g ′ (x) dx

Differentiation of Function Inverses If y = f −1 (x), then x = f (y) and dx = f ′ (y) dy

F (x) =

Z

f (x) dx

Differentiation of Parametric Integral Z u(x) d f (t) dt = f (u(x))u′ (x) − f (v(x))v ′ (x) dx v(x)

MATH141 Calculus Formula Sheet Algebraic identities

(a ± b)2 2

=

a3 ± b3

=

a −b n

n

a −b

a2 ± 2ab + b2

=

2

Logarithmic rules

loga (x1 x2 ) = log a x1 + loga x2   x1 loga = loga x1 − log a x2 x2 n loga (x ) = n log a x

(a − b)(a + b)

(a ± b)(a2 ∓ ab + b2 )

(a − b)(an−1 + an−2 b + · · · + abn−2 + bn−1 )

=

Roots of a quadratic equation: The general form of the equation is

=

√ −b ± b2 − 4ac x= 2a • if b2 > 4ac, two real roots • if b2 = 4ac, two identical real roots • if b2 < 4ac, no real roots Radian and degree conversion

π radians

|x| =

aloga x

ax loga y log b x = logb a

loga x Modulus

and its solution is given by

=

=

x

y

ax2 + bx + c = 0, a, b, c ∈ R, a 6= 0

180◦

x



x, −x,

x ≥ 0; x < 0.

Even function

f (−x) = f (x) Odd function

f (−x) = −f (x)

Complex numbers Definition

• Standard from of a complex number: z = x + iy where x, y are real numbers, and i2 = −1.

Trigonometric identities

sin( π2 − θ)

cos θ

=

cos2 θ + sin2 θ

=

1

cos2 θ − sin2 θ

=

cos(2θ )

sin(−θ) =

• Its complex conjugate: z = x − iy Modulus and argument

− sin θ

|z| = r =

cos(−θ) = cos θ sin(2θ) = 2 sin θ cos θ cos(2θ) = 2 cos2 θ − 1 = 1 − 2 sin2 θ sin(θ ± φ) = sin θ cos φ ± cos θ sin φ

cos(θ ± φ) =

cos θ cos φ ∓ sin θ sin φ

p

x2 + y 2

arg z = θ,

where tan θ = y/x, x 6= 0 Polar form

z = r e iθ = r(cos θ + i sin θ) Properties

• product of a complex number and its conjugate zz = |z|2 = x2 + y2 = r2

Trigonometric laws

c b a = = sin A sin B sin C

• complex conjugate of product of complex numbers (z1 z2 ) = z1 z2

2

=

2

=

a

b

c

2

=

2

2

b + c − 2bc cos A

a2 + c2 − 2ac cos B 2

2

a + b − 2ab cos C

Some Trigonometric Values

θ sin θ cos θ

π/6 1/2 √ 3/2

π/√4 1/ 2 √ 1/ 2

√π/3 3/2 1/2

De Moivre’s Theorem

z n = (r eiθ )n = rn einθ = rn [cos(nθ) + i sin(nθ )]. nth roots z

1 n

     θ 2kπ 2kπ 1 θ + + = r n cos + i sin n n n n

where n is a natural number, k = 0, 1, 2, 3.., n − 1.

MATH141 Vectors Formula Sheet

Let A(A1 , A2 , A3 ) and B(B1 , B2 , B3 ) be two points in R3 . Also, let a = (a1 , a2 , a3 ) and b = (b1 , b2 , b3 ) be two vectors in R3 . Then

• Length: |a| = • Unit vector:

q

a12 + a22 + a23 ;

b= a

a ; |a|

− − →

Vector between A and B is AB = (B1 − A1 , B2 − A2 , B3 − A3 )

Direction cosines (l, m, n) = ( b a1 , a b2 , a b3 )

• Scalar/Dot Product: a · b = |a| |b| cos θ • Vector/Cross Product:

• Scalar triple product:

   i a × b =  a1  b1

j a2 b2

where

    , 

k a3 b3

θ = ∡(a, b)

a⊥(a × b) and b⊥(a × b).

   a1 [ a, b, c ] = a · (b × c) =  b1  c1

• Component of a on b: ab = a ·bˆ.

Projection of a on b:

LINES: If (x0 , y0 , z0 ) is a point in line L and

a2 b2 c2

a3 b3 c3

     

− → b ab = ab c

a = (a1 , a2 , a3 ) is a vector parallel to L then

• Symmetric equations (Cartesian) form of a line x − x0 y − y0 z − z0 . = = a1 a2 a3

L: • Parametric equation form of a line L :

x = x0 + a1 t,

y = y0 + a2 t,

z = z0 + a3 t, where t ∈ R.

• Vector parametric equation form of a line  L:

     x x0 a1  y  =  y0  +  a2  t. z z0 a3

PLANES: If r0 = (x0 , y0 , z0 ) is a point in plane P with a = (a1 , a2 , a3 ) and b = (b1 , b2 , b3 ) are vectors parallel to plane P then

• Vector parametric form of a plane is given by P    x P :  y =  z where s, t ∈ R.

:

r = r0 + at + bs, i.e.      x0 a1 b1 y0  +  a2  t +  b2  s. z0 a3 b3

• Linear equation form of a plane, P : (r − r0 ) · n = 0, where n is the normal vector to plane P . This equation simplifies to ax + by + cz = d . • Let P1 and P2 be planes. P3 : P1 + λP2 = 0, for some value of λ, is a plane with common line of intersection with P1 and P2 .

MATH141 Algebra Formula Sheet Sigma Notation: For a < b and a, b ∈ Z then b X

xi = xa + . . . + xb .

i=a

Kronecker Delta:

δij

( 1 if i = j = 0 if i 6= j

Matrix Multiplication:

Am×n Bn×p = (AB )m×p . Inverse of a Matrix - Adjoint Method:

A−1 = where adj A is the adjoint of A. For a 2 × 2 matrix,

1 adj A |A|  A11 A21

adj A = =

A12 A22

T

where Aij is the cofactor associated with the element aij in A. This is given by:

Aij = (−1)i+j Mij where Mij denotes the minor associated with each element aij . The minor ( Mij ) is the resultant determinant which is found after deleting the i−th row and the j−th column of A. Rank: The Rank of a matrix is the number of non-zero rows when the matrix is reduced to row echelon form (REF). Solving Systems of Linear Equations: Consider a system of equations

Ax = b where the matrix A has an inverse matrix.

• Reduced Row Reduction Form (RREF):

The RREF method is commonly used to solve a system of equations and/or to determine the inverse of a matrix. Given a system of equations of the matrix form:

Ax = b where A has an inverse matrix then the RREF method reduces the combined matrix

to using valid row reduction operations.





A|I |b



I | A−1 | x



This method is commonly called Gaussian Elimination.

• Cramer’s Rule:

xi =

Dx D

where D = |A| and Dx is the determinant of A with the i−th column replaced by b....


Similar Free PDFs