Machanical Design Shigleys\' Chapter 3 solutions PDF

Title Machanical Design Shigleys\' Chapter 3 solutions
Author Heng Hui
Course Mechanical Engineering
Institution Universiti Malaysia Pahang
Pages 102
File Size 4.2 MB
File Type PDF
Total Downloads 43
Total Views 148

Summary

10th edition...


Description

Chapter 3

3-1 M o  0 18RB  6(100)  0 RB  33.3 lbf Ans. Fy  0

Ro  RB  100  0 Ro  66.7 lbf Ans. RC  RB  33.3 lbf Ans . ______________________________________________________________________________ 3-2 Body AB: Fx  0

R Ax  RBx

Fy  0

R Ay  RBy

M B  0

R Ay (10)  R Ax (10)  0

RA x  RAy

Body OAC: M O  0

R Ay (10)  100(30)  0

RAy  300 lbf

Ans .

Fx  0

ROx   RAx   300 lbf

Fy  0

ROy  RAy  100  0

ROy   200 lbf

Ans .

Ans .

______________________________________________________________________________

Chapter 3 - Rev. A, Page 1/100

3-3

0.8  1.39 kN Ans . tan 30 0.8  1.6 kN Ans . RA  sin 30 RO 

______________________________________________________________________________ 3-4 Step 1: Find R A & R E 4.5  7.794 m tan 30 M A  0 h

9 RE  7.794(400cos30 )  4.5(400sin 30 )  0 R E  400 N Ans .

F

x

0

R Ax  400cos30  0 RAx  346.4 N

F

y

0

RAy  400  400sin 30  0 RAy  200 N

RA  346.4 2  2002  400 N

Ans.

Step 2: Find components of R C on link 4 and R D

M

C

0

400(4.5)   7.794  1.9  R D  0 R D  305.4 N

F F

Ans .

x

0



 RCx 4  305.4 N

y

0



(RCy )4  400 N

Chapter 3 - Rev. A, Page 2/100

Step 3: Find components of R C on link 2  Fx  0

 RCx  2  305.4  346.4  0  RCx  2  41 N

F

y

0

R  Cy

2

 200 N

____________________________________________________________________________________________________________________ _

Chapter 3 - Rev. A, Page 3/100

3-5 M C  0 1500 R1  300(5)  1200(9)  0 R 1  8.2 kN Ans . Fy  0

8.2  9  5  R2  0 R2  5.8 kN

M 1  8.2(300)  2460 N  m

Ans.

Ans.

M 2  2460  0.8(900)  1740 N  m Ans. M 3  1740  5.8(300)  0 checks! _____________________________________________________________________________ 3-6 Fy  0

R 0  500  40(6)  740 lbf M 0  0

Ans.

M 0  500(8)  40(6)(17)  8080 lbf  in

Ans .

M 1  8080  740(8)   2160 lbf  in Ans. M 2  2160  240(6)  720 lbf  in Ans. 1 M 3   720  (240)(6)  0 checks! 2

______________________________________________________________________________

Chapter 3 - Rev. A, Page 4/100

3-7 M B  0 2.2R1  1(2)  1(4)  0 R1   0.91 kN Ans . Fy  0

0.91  2  R2  4  0 R2  6.91 kN Ans.

M 1   0.91(1.2)   1.09 kN m M 2  1.09  2.91(1)  4 kN  m M 3  4  4(1)  0 checks!

Ans . Ans.

______________________________________________________________________________ 3-8 Break at the hinge at B Beam OB: From symmetry, R1  VB  200 lbf

Ans.

Beam BD: M D  0 200(12)  R2 (10)  40(10)(5)  0 R2  440 lbf Ans. Fy  0

200  440  40(10)  R3  0 R3  160 lbf Ans.

Chapter 3 - Rev. A, Page 5/100

M 1  200(4)  800 lbf  in

Ans.

M 2  800  200(4)  0 checks at hinge M 3  800  200(6)  400 lbf  in Ans. 1 M 4  400  (240)(6)  320 lbf  in Ans. 2 1 M 5  320  (160)(4)  0 checks! 2

______________________________________________________________________________ 3-9 q  R1 x

1

 9 x  300 0

1

 5 x 1200

1

 R2 x  1500

0

V  R1  9 x  300  5 x  1200  R2 x  1500 1

1

0

M  R1 x  9 x  300  5 x  1200  R2 x  1500

1

(1) 1

(2)

At x = 1500+ V = M = 0. Applying Eqs. (1) and (2), R1  9  5  R2  0  R1  R2  14 1500R1  9(1500  300)  5(1500  1200)  0 R2  14  8.2  5.8 kN Ans. 0  x  300 :



R1  8.2 kN

Ans.

V  8.2 kN, M  8.2x N m

300  x  1200 : V  8.2 9  0.8 kN M  8.2x  9(x  300)   0.8x  2700 N m 1200  x  1500 : V  8.2 9  5   5.8 kN M  8.2x  9(x  300)  5( x 1200)   5.8 x 8700 N m Plots of V and M are the same as in Prob. 3-5. ______________________________________________________________________________

Chapter 3 - Rev. A, Page 6/100

3-10 q  R0 x

1

 M0 x

V  R0  M 0 x

1

2

 500 x  8

1

0

 40 x  14  40 x  20

0

1

 500 x  8  40 x  14  40 x  20 1

2

M  R0 x  M 0  500 x  8  20 x 14  20 x  20

0

1

(1)

2

(2)



at x  20 in, V  M  0, Eqs. (1) and (2) give R0  500  40  20  14   0



R0  740 lbf

R0 (20)  M0  500(20  8)  20(20  14)  0



2

M0  8080 lbf  in

Ans. Ans .

0  x  8 : V  740 lbf, M  740x  8080 lbf in 8  x  14 : V  740 500  240 lbf M  740x  8080 500(x  8) 240x  4080 lbf in 14  x  20 : V  740  500  40( x  14)  40 x  800 lbf M  740x  8080 500( x  8)  20( x  14)2  20 x2  800 x  8000 lbf  in Plots of V and M are the same as in Prob. 3-6. ______________________________________________________________________________

3-11 q  R1 x

1

 2 x  1.2

1

 R2 x  2.2

0

1

 4 x  3.2

0

V  R1  2 x  1.2  R2 x  2.2  4 x  3.2 1

1

1

0

(1) 1

M  R1 x  2 x 1.2  R2 x  2.2  4 x  3.2 at x = 3.2+, V = M = 0. Applying Eqs. (1) and (2),

R1  2  R2  4  0



R1  R2  6

3.2 R1  2(2)  R2 (1)  0  3.2 R1  R2  4 Solving Eqs. (3) and (4) simultaneously, R 1 = -0.91 kN, R 2 = 6.91 kN Ans. 0  x  1.2 :

(2)

(3) (4)

V   0.91 kN, M   0.91x kN m

1.2  x  2.2 : V   0.91 2   2.91 kN M   0.91x  2(x  1.2)   2.91x  2.4 kN m 2.2  x  3.2 : V  0.91  2  6.91  4 kN M   0.91x  2(x 1.2)  6.91( x  2.2)  4 x  12.8 kN  m Plots of V and M are the same as in Prob. 3-7. ______________________________________________________________________________

Chapter 3 - Rev. A, Page 7/100

3-12 q  R1 x

1

 400 x  4 0

1

 R2 x  10

1

0

0

 40 x  10  40 x  20  R3 x  20

0

1

1

V  R1  400 x  4  R2 x  10  40 x  10  40 x  20  R 3 x  20 1

1

M  R1 x  400 x  4  R2 x 10  20 x 10

2

0

2

 20 x  20  R3 x  20

M  0 at x  8 in 8 R1  400(8  4)  0  R1  200 lbf + at x = 20 , V =M = 0. Applying Eqs. (1) and (2), R2  R3  600 200  400  R2  40(10)  R3  0 

1

(1) 1

(2)

Ans.

Ans. 200(20)  400(16)  R2 (10)  20(10)2  0  R2  440 lbf R3  600  440  160 lbf Ans .

0  x  4 : V  200 lbf, M  200 x lbf  in 4  x  10 : V  200  400   200 lbf, M  200 x  400(x  4)  200x  1600 lbf  in 10  x  20 : V  200  400  440  40( x  10)  640  40 x lbf M  200x  400(x  4)  440( x  10)  20  x  10    20 x2  640 x  4800 lbf  in Plots of V and M are the same as in Prob. 3-8. ______________________________________________________________________________ 2

3-13 Solution depends upon the beam selected. ______________________________________________________________________________ 3-14 (a) Moment at center, l  2 a  xc  2 2 wl  l   wl  l  M c    l  2a        a 2  2 2 4   2  2 At reaction, Mr  wa 2 a = 2.25, l = 10 in, w = 100 lbf/in Mc 

100(10)  10    2.25  125 lbf  in 2  4  100 2.25

2

Mr 

  253 lbf  in

2 (b) Optimal occurs when M c  Mr

Ans.

Chapter 3 - Rev. A, Page 8/100

2 wl  l  wa 2 2 a    a  al  0.25 l  0  2  4 2 

Taking the positive root





l 1 l  l 2  4  0.25l 2    2  1  0.207 l  2 2  for l = 10 in, w = 100 lbf, a = 0.207(10) = 2.07 in Mmin 100 2 2.072  214 lbf  in a

A ns .

______________________________________________________________________________ 3-15 (a) 20  10  5 kpsi 2 20  10 CD   15 kpsi 2

C

R  15 2  8 2  17 kpsi  1  5  17  22 kpsi

 2  5 17  12 kpsi  p  tan 1    14.04 cw 2  15   1  R  17 kpsi 1

8

 s  45  14.04  30.96 ccw

(b) 9  16  12.5 kpsi 2 16  9 CD   3.5 kpsi 2

C

R  5 2  3.5 2  6.10 kpsi  1  12.5  6.1  18.6 kpsi

 2  12.5  6.1  6.4 kpsi 1  5   tan 1    27.5 ccw 2 3.5    1  R  6.10 kpsi

p 

 s  45  27.5  17.5 cw

Chapter 3 - Rev. A, Page 9/100

(c) 24  10  17 kpsi 2 24  10  7 kpsi CD  2 C

R  7 2  6 2  9.22 kpsi  1  17  9.22  26.22 kpsi

 2  17  9.22  7.78 kpsi

1

 7 

 p   90   tan 1    69.7  ccw 2 6     1  R  9.22 kpsi

 s  69.7  45  24.7 ccw

(d) 12  22  5 kpsi 2 12  22 17 kpsi CD  2 C

R  17 2 12 2  20.81 kpsi  1  5  20.81  25.81 kpsi

 2  5  20.81   15.81 kpsi

1

17   

 p   90   tan 1    72.39  cw 2 12 

Cha

 1  R  20.81 kpsi  s  72.39  45  27.39 cw

______________________________________________________________________________

Chapter 3 - Rev. A, Page 11/100

3-16 (a) 8  7  0.5 MPa 2 8 7 CD   7.5 MPa 2 C

R  7.5 2  6 2  9.60 MPa  1  9.60  0.5  9.10 MPa

 2  0.5  9.6  10.1 Mpa 1

 7.5  

  p   90  tan1    70.67 cw 2  6    1  R  9.60 MPa  s  70.67   45   25.67 cw

(b) 96  1.5 MPa 2 9 6 CD   7.5 MPa 2 C

R  7.52  32  8.078 MPa  1  1.5  8.078  9.58 MPa

 2  1.5  8.078  6.58 MPa

 p  tan 1    10.9 cw 2  7.5   1  R  8.078 MPa 1

3

 s  45  10.9  34.1 ccw

Chapter 3 - Rev. A, Page 12/100

(c) 12  4  4 MPa 2 12  4  8 MPa CD  2 C

R  8 2  7 2  10.63 MPa  1  4  10.63  14.63 MPa

 2  4  10.63  6.63 MPa 1

 8 



 

 p   90   tan 1    69.4  ccw 2 7  1  R  10.63 MPa  s  69.4  45  24.4 ccw

(d) 65  0.5 MPa 2 6 5  5.5 MPa CD  2 C

R  5.52  82  9.71 MPa  1  0.5  9.71  10.21 MPa

 2  0.5  9.71  9.21 MPa

 p  tan 1    27.75 ccw 2  5.5   1  R  9.71 MPa 1

8

 s  45  27.75  17.25 cw

______________________________________________________________________________

Chapter 3 - Rev. A, Page 13/100

3-17 (a) 12  6  9 kpsi 2 12  6 CD   3 kpsi 2 C

R  3 2  4 2  5 kpsi  1  5  9  14 kpsi

 2  9  5  4 kpsi 1 1 4 tan     26.6 ccw  3 2  1  R  5 kpsi

p 

 s  45  26.6  18.4 ccw

(b) 30  10  10 kpsi 2 30  10 CD   20 kpsi 2 C

R  202  102  22.36 kpsi  1  10  22.36  32.36 kpsi

 2  10  22.36  12.36 kpsi

1  10  tan1    13.28 ccw 2  20   1  R  22.36 kpsi

p 

 s  45  13.28  31.72 cw

Chapter 3 - Rev. A, Page 14/100

(c) 10  18  4 kpsi 2 10  18 CD   14 kpsi 2 C

R  142  92  16.64 kpsi  1  4  16.64  20.64 kpsi

 2  4  16.64  12.64 kpsi 1

14 

   p   90   tan 1    73.63  cw 2  9   1  R  16.64 kpsi  s  73.63  45  28.63 cw

(d) 9 19  14 kpsi 2 19  9 CD   5 kpsi 2 C

R  5 2  8 2  9.434 kpsi  1  14  9.43  23.43 kpsi

 2  14  9.43  4.57 kpsi 1

5 

   p   90   tan 1    61.0  cw 2 8     1  R  9.34 kpsi

 s  61  45   16  cw

______________________________________________________________________________

Chapter 3 - Rev. A, Page 15/100

3-18 (a) 80  30  55 MPa 2 80  30 CD   25 MPa 2 C

R  25  20  32.02 MPa  1  0 MPa 2

2

 2   55  32.02   22.98   23.0 MPa  3  55  32.0  87.0 MPa 1 2 

23  11.5 MPa, 2

 2 3  32.0 MPa,

1 3 

87  43.5 MPa 2

(b) 30  60   15 MPa 2 60  30 CD   45 MPa 2 C

2 2 R  45  30  54.1 MPa  1  15  54.1  39.1 MPa

 2  0 MPa  3  15  54.1   69.1 MPa 39.1  69.1  54.1 MPa 2 39.1  19.6 MPa 1 2  2 69.1  34.6 MPa 23 2

1 3 

Chapter 3 - Rev. A, Page 16/100

(c) 40  0  20 MPa 2 40  0 CD   20 MPa 2 C

R  202  202  28.3 MPa  1  20  28.3  48.3 MPa

 2  20  28.3  8.3 MPa  3   z  30 MPa 1 3 

48.3  30  39.1 MPa, 2

 1 2  28.3 MPa,

2 3 

30  8.3  10.9 MPa 2

(d) 50  25 MPa 2 50  25 MPa CD  2 C

R  252  302  39.1 MPa  1  25  39.1  64.1 MPa

 2  25  39.1  14.1 MPa  3   z  20 MPa 64.1  20 20  14.1  42.1 MPa,  1 2  39.1 MPa,  2 3   2.95 MPa 2 2 ______________________________________________________________________________

1 3 

3-19 (a) Since there are no shear stresses on the stress element, the stress element already represents principal stresses.  1   x  10 kpsi

 2  0 kpsi  3   y  4 kpsi 10  ( 4)  7 kpsi 2 10  1 2   5 kpsi 2 0  ( 4)  2 kpsi 23 2

1 3 

Chapter 3 - Rev. A, Page 17/100

(b) 0  10  5 kpsi 2 10  0  5 kpsi CD  2 C

R  52  42  6.40 kpsi  1  5  6.40  11.40 kpsi

 2  0 kpsi,  3  5  6.40  1.40 kpsi  1 3  R  6.40 kpsi,

1 2 

11.40  5.70 kpsi, 2

3 

1.40  0.70 kpsi 2

(c) 2 8  5 kpsi 2 8 2 CD   3 kpsi 2 C

R  3 2  4 2  5 kpsi  1  5  5  0 kpsi,  2  0 kpsi

 3  5  5   10 kpsi 1 3 

10  5 kpsi, 2

 1 2  0 kpsi,

 2 3  5 kpsi

(d) 10  30  10 kpsi 2 10  30 CD   20 kpsi 2 C

R  20 2 10 2  22.36 kpsi  1  10  22.36  12.36 kpsi

 2  0 kpsi  3  10  22.36  32.36 kpsi 12.36 32.36  6.18 kpsi,  2 3   16.18 kpsi 2 2 ______________________________________________________________________________

 1 3  22.36 kpsi,

1 2 

Chapter 3 - Rev. A, Page 18/100

3-20

From Eq. (3-15),

 3  ( 6 18  12) 2  6(18)  (6)(12)  18( 12)  92  62  ( 15) 2   6(18)( 12)  2(9)(6)( 15)  ( 6)(6) 2  18( 15)2  ( 12)(9) 2   0

 3  594  3186  0 Roots are: 21.04, 5.67, –26.71 kpsi Ans. 21.04  5.67  7.69 kpsi 1 2  2 5.67  26.71  16.19 kpsi 23 2 21.04  26.71  23.88 kpsi  max  1 3  Ans. 2

_____________________________________________________________________________ 3-21 From Eq. (3-15)





2  3  (20  0  20) 2   20(0)  20(20)  0(20)  402  20 2  0 2  













2    20(0)(20)  2(40)  20 2 (0)  20  20 2  0(0) 2  20(40) 2  0  

 3  40 2  2 000  48 000  0 Roots are: 60, 20, –40 kpsi 60  20  20 kpsi 2 20  40 23  30 kpsi 2 60  40  50 kpsi  max  1 3  2

Ans.

1 2 

Ans.

_____________________________________________________________________________

Chapter 3 - Rev. A, Page 19/100

3-22 From Eq. (3-15) 2 2  3  (10  40  40) 2   10(40) 10(40) 40(40) 202    40    20  

  2 2 2  10(40)(40)  2(20)( 40)( 20) 10( 40)  40( 20)  40(20)  0  3  90 2  0 Roots are: 90, 0, 0 MPa Ans.

230  1 2   1 3   max 

90  45 MPa 2

A ns.

_____________________________________________________________________________ 3-23

 

F 15000   33 950 psi  34.0 kpsi A  4   0.75 2 



FL L 60    33 950  0.0679 in AE E 30 106 



0.0679  1130 106   1130 1   L 60 From Table A-5, v = 0.292

 2   v 1   0.292(1130)   330 d   2d  330 10

6

Ans .

Ans.



Ans.

Ans .

(0.75)  248 10  in 6

An s.

_____________________________________________________________________________ 3-24 F 3000  6790 psi  6.79 kpsi Ans.    A  4 0.752



FL L 60    6790  0.0392 in AE E 10.4 106 



0.0392 6  65310   653 L 60 From Table A-5, v = 0.333

1 



 2   v 1   0.333(653)   217

A ns.

Ans.

Ans .

d   2d  217 10 6  (0.75)  163 10 6  in

Ans.

Chapter 3 - Rev. A, Page 20/100

_____________________________________________________________________________ 3-25  d 0.0001 d   0.0001 2  d d From Table A-5, v = 0.326, E = 119 GPa  0.0001  306.7 10 6  1  2  v 0.326 FL F and   , so  AE A E  1E  306.7 106  (119) 109   36.5 MPa = L F   A  36.5 106 

  0.03

2

An s .  25 800 N  25.8 kN 4 S y = 70 MPa >  , so elastic deformation assumption is valid. _____________________________________________________________________________ 3-26



FL L 8(12)    20 000  0.185 in AE E 10.4  106 

Ans .

_____________________________________________________________________________ 3-27



FL L 3    140 106   0.00586 m  5.86 mm Ans . AE E 71.7  109 

_____________________________________________________________________________ 3-28

 

FL L 10(12)    15 000  0.173 in AE E 10.4  106 

Ans .

_____________________________________________________________________________ 3-29 With  z  0, solve the first two equations of Eq. (3-19) simulatenously. Place E on the left-hand side of both equations, and using Cramer’s rule,


Similar Free PDFs