MAT 341 Note the seventh lecture note PDF

Title MAT 341 Note the seventh lecture note
Author Odunayo Akinlade
Course Mathematics
Institution University of Ibadan
Pages 4
File Size 81.7 KB
File Type PDF
Total Downloads 78
Total Views 152

Summary

This is the lecture note that was given to us during one of the classes for mathematical methods in mat 351...


Description

MAT 341: MATHEMATICAL METHODS1. Applications of Laplace Transformations to Solutions of Ordinary Differential Equations (ODE). 17TH AND 18TH MAY, 2021.

1

Second Order o.d.e

Laplace transformations can be applied in the solution of ordinary differential equations with given initial conditions. Example 1.1 Solve the Initial Value Problem (IVP) y ′′ − 4y = 0. y ′ (0) = 2.

y(0) = 1, Solution

Recall that the Laplace transformation for second derivative is given by: L(f ′′ )(s) = s2 L(f )(s) − sf (0) − f ′ (0). Apply Laplace tranformation on the differential equation and use the given conditions, we obtain, L(y ′′ − 4y) = L(0) L(y ′′ ) − 4L(y) = 0 s2 L(y) − sy(0) − y ′ (0) − 4L(y) = 0 Now let

L(y) = y¯ s2 y¯ − s.1 − 2 − 4¯ y=0 (s2 − 4)¯ y = s+2 s+2 y¯ = 2 s −4  1  therefore y = L−1 s−2 ⇒ y(t) = e2t

Let’s consider the case of non-homogeneous ode, 1

Example 1.2 Solve the Initial Value Problem (IVP) y ′′ − 5y ′ + 4y = e2t . y′ (0) = 0.

y(0) = 1, Solution

Apply Laplace tranformation on the differential equation and use the given conditions, we obtain, L(y ′′ − 5y ′ + 4y) = L(e2t )

1 s−2 1 s2 L(y) − sy(0) − y ′ (0) − 5[sL(y ) − y(0)] + 4L(y ) = s−2 L(y ′′) − 5L(y ′ ) + 4L(y) =

Now let

L(y) = y¯

1 s−2 1 2 y¯(s − 5s + 4) − s + 5 = s−2 s2 − 7s + 11 y¯ = (s − 2)(s2 − 5s + 4) s2 − 7s + 11 y¯ = (s − 2)(s − 1)(s − 4)

s2 y¯ − s.1 − 0 − 5[s¯ y − 1] + 4¯ y=

Therefore

1 1  5 1  1 1  + − 2 s−2 3 s−1 6 s−4 1 2t 5 t 1 4t ⇒y=− e + e − e . 2 3 6 Exercise 1.1 Solve the following IVP by Laplace Transformation: y¯ = −

1.

y ′′ + 2y ′ + 5y = 0

y(0) = 2,

y ′ (0) = 4.

2.

y ′′ − 4y ′ + 4y = t2

y(0) = 0,

y ′ (0) = 1.

3.

y ′′ + 2y ′ + 2y = 0

y(0) = 1,

y ′ (0) = 1.

2

Simultaneous ODE

Some steps to note in solving simultaneous ode: 1. Take the Laplace transformation of both equations; 2. Insert the initial conditions and 3. Solve for x ¯ and y¯ by normal algebraic method. 2

Example 2.1 Solve the pair of simultaneous equations: y˙ − x = et x˙ + y = e−t , given that at t = 0;

x = 0, y = 0.

Solution Take the Laplace transformations of the equations, we obtain 1 s−1   1 s¯ x − x0 + y¯ = s+1 

 s¯ y − y0 − x¯ =

Solve the equations for x¯ and y¯, then take the inverse Laplace transformations; we obtain 1 1 x = − et − e−t + cos t + sin t 2 2 1 t 1 −t y = e + e − cos t + sin t. 2 2 Example 2.2 Solve the pair of simultaneous equations: x¨ + 2x − y = 0 y¨ + 2y − x = 0, given that at t = 0; x0 = 4, y0 = 2; x1 = 0, y1 = 0. Solution Take the Laplace transformations of the equations, we obtain  x − y¯ = 0 s2x¯ − sx0 − x1 + 2¯   2 y − x¯ = 0 s y¯ − sy0 − y1 + 2¯



Using initial conditions; we obtain s2x¯ − 4s − +2¯ x − y¯ = 0 s2 y¯ − 2s + 2¯ y − x¯ = 0 Simplify and take the inverse Laplace transformation, we obtain √ x = 3 cos t + cos( 3t) √ y = 3 cos t − cos( 3t) Exercise 2.1 Solving the following pairs of ode by Laplace transformation 1.

x˙ + y˙ + x + 2y = e−3t x˙ + 3x + 5y = 5e−2t 3

given that at t = 0; x = 4 and y = −1. 2.

2x˙ + 2x + 3y˙ + 6y = 56et − 3e−t x˙ − 2x − y¯ − 3y = −21et − 7e−t

given that at t = 0; x = 8 and y = 3. 3.

5¨ x + 12¨ y + 6x = 0 5¨ x + 16¨ y + 6y = 0

given that at t = 0; x =

7 4

, y = 1, x1 = 0, y1 = 0.

4...


Similar Free PDFs