Mid-Term and Final Examination Formula Sheet with Accompanying Notes PDF

Title Mid-Term and Final Examination Formula Sheet with Accompanying Notes
Course Investments
Institution University of Melbourne
Pages 37
File Size 545.6 KB
File Type PDF
Total Downloads 569
Total Views 827

Summary

FNCE30001 InvestmentsFormulae SheetRisk and ReturnAnnual Percentage Rate (APR/BEY)𧰀()*=𧰀+,-=𧰀)./%×𠐀)./%3/Effective Annual Rate (EAR)𧰀,(*=( 1 +𧰀)./%)5− 1𧰀,(*=( 1 +𧰀()*𠐀)5− 1Where; both equations are equal, 𧰀)./%equals/"#$5.Annualised ReturnAnnualised Return=( 1 +Total Return)!5− 1Interest Ac...


Description

FNCE30001 Investments

Formulae Sheet

Risk and Return

Return on Asset

R =#

Revenue − Cost Cost

R =#

Revenue − Cost Initial#Margin

Return on Short Sale

Holding Period Return

𝑟! =

𝑃! − 𝑃" + 𝐷! 𝑃"

Margin Percent

Margin#Percent = # Margin#Percent = # Margin#Percent = #

Assets − #Liabilities Value#of#Stock#Purchased

Net#Equity#In#Account Value#of#Stock#Purchased

Value#of#Stock − Loan Value#of#Stock#Purchased

Loan- To- Value

LTV =

Loan Value#of#Stock#Purchased

LTV = 1 − Margin#Percent

Arithmetic Return

1 1 𝑟I= (𝑟! + 𝑟# + ⋯ + 𝑟$ ) = N 𝑟% 𝑛 𝑛# $

%&!

Geometric Return ! 𝑟' = O( 1 + 𝑟!)(1 + 𝑟#) … (1 + 𝑟$ ) − 1

𝑟' = [( 1 + 𝑟!)(1 + 𝑟# ) … (1 + 𝑟$)] $ − 1 !

Annual Percentage Rate (APR/BEY (APR/BEY))

𝑟()* = 𝑟+,- = 𝑟)./%01 × 𝑁)./%012 3.4/

Effective Annual Rate (EAR)

𝑟,(* = (1 + 𝑟)./%01 )5 − 1 𝑟,(* = (1 +

𝑟()* 5 ) −1 𝑁

Where; both equations are equal, 𝑟)./%01 equals

/"#$ 5

.

Annualised Return

Annualised#Return = (1 + Total#Return)5 − 1 !

Interest Accrued

𝑟 Interest#Accured = Loan#Amount# × V(1 + )5 − 1W 𝑁 Loan Payable Inclusive of Interest Accrued

𝑟 Loan#Payable#with#Interest#Accured = Loan#Amount# × V(1 + )5 W 𝑁 Real Return

𝑟*,(6 =

1 + 𝑟57895(6 −1 1+𝑖

Expected/Scenario Return :

Where; s#=#particular#scenario.

𝐸[ ⏞ 𝑟( ] = N 𝑝( 𝑠) × 𝑟( ( 𝑠) 2&!

Historic Variance of One Risky Asset

1 N (𝑟; − 𝑟I)# 𝜎 = 𝑇−1 <

#

;&!

Scenario Variance of One Risky Asset :

𝜎 = N 𝑝(𝑠)(𝑟% (𝑠) − 𝐸[𝑟 ⏞ % ])# #

2&!

Expected Return on a Portfolio with One Risky and One Risk- free Asset

𝐸[⏞𝑟) ] = 𝑤% 𝐸[𝑟⏞% ] + (1 − 𝑤% )𝑟= Risk (Standard Deviation) on a Portfolio with One Risky and One Risk- free Asset

𝜎) = 𝑤% 𝜎% Price of an Asset >

𝑃% = N

;&!

e ;f 𝐸b𝐶𝐹 (1 + 𝐸[ 𝑟⏞% ]);

Price of an Asset with a Dividend in Perpetuity

𝑃% =

𝐸 bg𝐷f 𝐸 [𝑟h %]

Modern Portfolio Theory and Index Models

Mean Mean-- Variance Utility

𝑈 = 𝐸 [ 𝑟⏞ 0] −

1 𝐴𝜎 # 2

Mean Mean-- Variance Maximising Utility

1 Max. U = 𝑤) 𝐸 [⏞𝑟) ] +(1 − 𝑤) )𝑟= − 𝐴𝑤)# 𝜎)# 2 Markowitz’s Utility Maximising Weight in Risky Portfolio

𝑤)∗ =

𝑟 @ f − 𝑟= 𝐸 b⏞ 𝐴𝜎)#

Markowitz’s Utility Maximising Risk Premium

𝐸 [𝑟⏞ )] − 𝑟= = 𝐴𝜎)# This assumes the weight in the risky/market portfolio is 1, i.e. 100%. Markowitz’s Level of Risk Risk-- Aversion

𝐴=

𝐸 [𝑟⏞8 ] − 𝑟= 𝜎8#

Again, this assumes the weight in the market portfolio is 1, i.e. 100%, as the representative investor assumes the full market portfolio. Sharpe Ratio or Reward- to- Variability

𝑆) =

⏞ ) ] − 𝑟= 𝐸[𝑟 𝜎⏞/#

Expected Return on a Portfolio with ‘N’ Securities 5

𝐸[𝑟⏞ )] = N 𝑤5 𝐸[𝑟⏞) ] $&!

Risk (Variance) on a Portfolio with Two Risky Securities

𝜎)# = 𝑤(# 𝜎(# + 𝑤+# 𝜎+# + 2𝑤( 𝑤+ 𝜎(+, or,

𝜎)# = 𝑤(# 𝜎(# + 𝑤+# 𝜎+# + 2𝑤( 𝑤+ 𝜎( 𝜎+ 𝜌(+

Where; 𝜎(+#=#Covariance#between#A#&#B, 𝜌(+ #=#Correlation#between#A#&#B. Historic Covariance

𝜎(+

1 = Ns 𝑟(,; − (𝑟Its 𝑟+,; − +𝑟It 𝑇−1 <

;&!

Scenario Covariance :

𝜎(+ = N 𝑝(𝑠 )s𝑟(,2 − 𝐸[⏞𝑟( ]ts𝑟+,2 − 𝐸[𝑟 ⏞ +]t 2&!

Covariance between Two Risky Securities

𝜎%,C = 𝛽%,C #𝜎C

𝜎(+ = 𝜌(+ 𝜎( 𝜎+ Correlation

Corrs𝑟⏞( , ⏞𝑟 + t =

Cov s𝑟⏞( , ⏞ 𝑟 +t

St. Devs𝑟 ⏞( t#St. Devs𝑟 ⏞+ t

𝜌(+ =

𝜎(+ 𝜎( 𝜎+

Net Asset Value (NAV)

NAV =

Mkt. Value#of#Assets − Liabilities # Shares#Outstanding

Index Model D

𝑟%,; − 𝑟=,; = 𝛼% +N 𝛽%,Cs𝑟C,; − 𝑟=,; t + 𝑒%,; C&!

Realised Beta of a Security from an Index Model

𝛽%,C = 𝛽%,C =

𝐶𝑜𝑣(𝑟}% , 𝑟}C ) 𝑉𝑎𝑟(𝑟}C )

𝐶𝑜𝑣s 𝑟%} − 𝑟= , 𝑟}C − 𝑟= t 𝑉𝑎𝑟(𝑟}C ) 𝛽%,C =

𝜎%,C 𝜎C#

𝑦# − 𝑦! 𝛽%,C = 𝑥# − 𝑥! Index Market Model

𝑟%,; − 𝑟=,; = 𝛼% + 𝛽s𝑟 t + 𝑒%,; % 8,; − 𝑟=,; Realised Risk of an Individual Security from an Index Model # 𝜎#/& + 𝜎.#% 𝜎/#% = 𝛽%,8

𝜎/#%

# # 𝜎/,8 𝛽%,8 = 𝑅#

# 𝜎#/&=#Covariance/systematic#risk and 𝜎.#%=#firmWhere; total risk is a factor of: 𝛽%,8 specific/residual#risk.

Equation of the Security Characteristic Line

𝐸b𝑟 ⏞% − ⏞ 𝑟8 − 𝑟=f = 𝛼†% + 𝛽‡%s𝑟8 − 𝑟= t 𝑟= … RR-squared squared

𝑅 # = 𝜌# =

Explained#Variance Total#Variance

𝑅 # = 𝜌# =

# # 𝛽%,8 𝜎/,8 # 𝛽%,8 𝜎#/& + 𝜎.#%

Treynor Treynor-- Black Portfolio Optimisation i. Compute alpha of the individual securities.

𝛼% = 𝐸[ 𝑟⏞%] − ˆ𝑟= + 𝛽% s𝐸 [⏞ 𝑟 8 ] − 𝑟= t‰ ii. Compute residual variances (or firm-specific risk) of the individual securities.

𝜎.#% = 𝜎#.% 1. Compute initial position in the active portfolio.

𝑤%0 =

𝛼% 𝜎.#%

Known as the information ratio or appraisal ratio. 2. Rescale the pseudo-weights to create the true weight of each asset in the active portfolio.

𝑤% = #

𝑤%" 5 ∑%&! 𝑤%"

3. Compute the alpha and beta of the entire portfolio. 5

𝛼( = N 𝑤% 𝛼% %&! 5

𝛽( = N 𝑤% 𝛽% %&!

4. Compute the residual variance.

𝜎.#"

5

= N 𝑤%# 𝜎.#% %&!

5. Compute the initial weight of the active portfolio in the overall risky portfolio.

𝑤(0 =

𝛼( ⁄𝜎.#"

⏞ 8 ] − 𝑟= t Œ( 𝜎8# ) s𝐸[𝑟

Numerator is the information ratio. Denominator is the market risk premium divided by the market variance. 6. Adjust the initial weight allocated in the active portfolio.

𝑤(∗ =

𝑤(0 1 + 𝑤(0 (1 − 𝛽()

7. Calculate the weight in the passive, benchmark/market fund. ∗ 𝑤8 = 1 − 𝑤(∗

Return, Risk and Sharpe Ratio of a Treynor Treynor-- Black Optimised Portfolio 1. Return.

𝐸 [ 𝑟⏞ 0] − 𝑟= = 𝑤∗8 s𝐸 [𝑟⏞ 8] − 𝑟= t + 𝑤(∗ •𝛼( + 𝛽( s𝐸 [𝑟⏞ 8] − 𝑟=tŽ 𝐸[ ⏞ 𝑟0] − 𝑟= = 𝑤(∗ 𝛼( + ( 𝑤8∗ + 𝑤(∗𝛽()s 𝐸[ ⏞ 𝑟8 ] − 𝑟= t

2. Risk. # 𝜎0# = (𝑤8∗ + 𝑤(∗ 𝛽( )# 𝜎8 + (𝑤(∗ 𝜎." )#

3. Sharpe Ratio.

𝛼( # + ( )# 𝑆0 = • 𝑆8 𝜎 ."

𝑆0 = •

𝐸[ 𝑟⏞0 ] − 𝑟= 𝜎0

Asset Pricing

Single, Market Factor Capital Asset Pricing Model (CAPM)

𝐸[⏞𝑟%] − 𝑟= = 𝛽%,8s𝐸 [𝑟⏞8 ] − 𝑟=t 𝐸[𝑟⏞ %] − 𝑟= = 𝐶𝑜𝑣s𝑟}% − 𝑟= , 𝑟}C − 𝑟= t

(𝐸[ 𝑟⏞8 ] − 𝑟= ) 𝑉𝑎𝑟(𝑟h 8 − 𝑟= )

Treynor Measure

𝑇) =

𝐸 [⏞𝑟) ] − 𝑟= 𝛽)

Where; 𝑇) the return per unit of systematic risk. Combining Beta 5

𝛽) = N 𝑤% 𝛽% %&!

Equation of Security Characteristic Line

𝐸 ˆ𝑟h 𝑟8 − 𝑟= ‰ = 𝛼 † % + 𝛽‡% (𝑟8 − 𝑟= ) =… % − 𝑟h

Where; 𝛼†% is the intercept, 𝛽‡% is the slope.

Merton’s Intertemporal CAPM (ICAPM)

𝐸[⏞ 𝑟% ] − 𝑟= = 𝛽%,8s𝐸[ ⏞ 𝑟8 ] − 𝑟= t + 𝛽%,...


Similar Free PDFs