Nise - Control Systems Engineering 6e solution skill PDF

Title Nise - Control Systems Engineering 6e solution skill
Author Manuel Arias
Course Control
Institution Universidad Nacional de Colombia
Pages 54
File Size 1.3 MB
File Type PDF
Total Downloads 76
Total Views 153

Summary

Download Nise - Control Systems Engineering 6e solution skill PDF


Description

Solutions to Skill-Assessment Exercises

CHAPTER 2 2.1 The Laplace transform of t is F ðsÞ ¼

1 ðs þ 5Þ

2

1 using Table 2.1, Item 3. Using Table 2.2, Item 4, s2

.

2.2 Expanding F(s) by partial fractions yields: A D C B F ðsÞ ¼ þ þ þ s s þ 2 ðs þ 3Þ 2 ðs þ 3Þ where,

   10  5  B¼ A¼ ¼ 5 ¼   sðs þ 3Þ2 S!2 ðs þ 2Þðs þ 3Þ 2 S!0 9    40 10  10 2 dF ðsÞ  ¼ C¼ ¼ ; and D ¼ ð s þ 3Þ ds s!3 9 sð s þ 2ÞS!3 3 10

Taking the inverse Laplace transform yields, f ðtÞ ¼

40 10 5  5e2t þ te3t þ e3t 3 9 9

2.3 Taking the Laplace transform of the differential equation assuming zero initial conditions yields: s3 CðsÞ þ 3s2 CðsÞ þ 7sCðsÞ þ 5CðsÞ ¼ s2 RðsÞ þ 4sRðsÞ þ 3Rð sÞ Collecting terms,

Thus,

3    s þ 3s2 þ 7s þ 5 CðsÞ ¼ s2 þ 4s þ 3 RðsÞ s2 þ 4s þ 3 CðsÞ ¼ 3 RðsÞ s þ 3s2 þ 7s þ 5 1

2

Solutions to Skill-Assessment Exercises

2.4 GðsÞ ¼

2s þ 1 CðsÞ ¼ RðsÞ s2 þ 6s þ 2

Cross multiplying yields, d2 c dr dc þ 6 þ 2c ¼ 2 þ r dt dt2 dt 2.5 CðsÞ ¼ RðsÞGðsÞ ¼

1 1 B s C A ¼  þ ¼ þ s ð s þ 4Þ ðs þ 8Þ s2 ðs þ 4Þð s þ 8Þ sð s þ 4Þð s þ 8Þ

where A¼

  1 1  ¼  32 ðs þ 4Þðs þ 8Þ S!0



Thus,

cðtÞ ¼

  1  1  1 1 ; and C ¼ ¼  ¼   16 sð s þ 8Þ S!4 sð s þ 4Þ S!8 32 1 1 1  e4t þ e8t 32 16 32

2.6 Mesh Analysis Transforming the network yields, s

1

V(s)

I9(s)

+ _

V1(s)

1

+ s I1(s)

s

V2(s) _

I2(s)

Now, writing the mesh equations, ð s þ 1ÞI 1 ðsÞ  sI 2 ðsÞ  I 3 ðsÞ ¼ V ðsÞ sI 1 ðsÞ þ ð2s þ 1ÞI 2 ðsÞ  I 3 ðsÞ ¼ 0 I 1 ðsÞ  I 2 ðsÞ þ ðs þ 2ÞI 3 ðsÞ ¼ 0 Solving the mesh equations for I2(s),    ðs þ 1Þ V ðsÞ 1    s 0 1    2   1 s þ 2s þ 1 V ðsÞ 0 ð s þ 2Þ  ¼ I 2 ðsÞ ¼  sð s2 þ 5s þ 2Þ s 1   ð s þ 1Þ  s  ð 2s þ 1 Þ 1    1 1 ðs þ 2Þ 

Chapter 2 Solutions to Skill-Assessment Exercises

But, VL ðsÞ ¼ sI 2 ðsÞ Hence, VL ðsÞ ¼

2  s þ 2s þ 1 V ðsÞ ð s2 þ 5s þ 2Þ

or VL ðsÞ s2 þ 2s þ 1 ¼ 2 V ðsÞ s þ 5s þ 2

Nodal Analysis

Writing the nodal equations,   1 þ 2 V 1 ðsÞ  VL ðsÞ ¼ V ðsÞ s   1 2 þ 1 VL ðsÞ ¼ V ðsÞ V 1 ðsÞ þ s s Solving for VL(s),

or

     1  V ðsÞ  þ 2   s   1      1 V ðsÞ  s2 þ 2s þ 1 V ðsÞ s  ¼ VL ðsÞ ¼    1  ð s2 þ 5s þ 2Þ   1 þ 2  s       2  1 þ 1   s VL ðsÞ s2 þ 2s þ 1 ¼ 2 s þ 5s þ 2 V ðsÞ

2.7 Inverting GðsÞ ¼  Noninverting

Z 2 ðsÞ 100000  ¼ s ¼ Z 1 ðsÞ 105 =s

105 þ 105 s ½Z 1 ðsÞ þ Z ðsÞ ! GðsÞ ¼ ¼ Z 1 ðsÞ 105 s

!

¼sþ1

2.8 Writing the equations of motion,  2  s þ 3s þ 1 X1 ðsÞ  ð3s þ 1ÞX2 ðsÞ ¼ F ðsÞ   ð3s þ 1ÞX1 ðsÞ þ s2 þ 4s þ 1 X2 ðsÞ ¼ 0

3

4

Solutions to Skill-Assessment Exercises

Solving for X2 (s),

Hence,

  2   s þ 3s þ 1 F ðsÞ    ð3s þ 1Þ ð3s þ 1ÞF ðsÞ 0   ¼ 3 X 2 ðsÞ ¼   2   s s ð þ 7s2 þ 5s þ 1Þ ð3s þ 1Þ   s þ 3s þ 1 2    ð3s þ 1Þ s þ 4s þ 1  ð3s þ 1Þ X 2 ðsÞ ¼ 3 F ðsÞ sð s þ 7s2 þ 5s þ 1Þ

2.9 Writing the equations of motion,  2  s þ s þ 1 u 1 ðsÞ  ð s þ 1Þu 2 ðsÞ ¼ T ðsÞ ð s þ 1Þu 1 ðsÞ þ ð2s þ 2Þu 2 ðsÞ ¼ 0

where u 1 ðsÞ is the angular displacement of the inertia. Solving for u 2 ðsÞ,  2    s þsþ1 T ðs Þ    ðs þ 1Þ ðs þ 1ÞF ðsÞ 0   ¼ 3 u 2 ðsÞ ¼   2  s þ s þ 1 ðs þ 1Þ  2s þ 3s2 þ 2s þ 1    ðs þ 1Þ ð2s þ 2Þ 

From which, after simplification,

u 2 ðsÞ ¼

1 2s2 þ s þ 1

2.10 Transforming the network to one without gears by reflecting the 4 N-m/rad spring to the left and multiplying by (25/50)2, we obtain,

Writing the equations of motion,  2  s þ s u 1 ðsÞ  su a ðsÞ ¼ T ðsÞ su 1 ðsÞ þ ð s þ 1Þu a ðsÞ ¼ 0 where u 1 ðsÞ is the angular displacement of the 1-kg inertia. Solving for u a ðsÞ,   2   s þ s T ðsÞ     s sT ðsÞ 0   ¼ 3 u a ðsÞ ¼   2  s þs  s þ s2 þ s s    s ðs þ 1Þ 

Chapter 2 Solutions to Skill-Assessment Exercises

From which, 1 u a ðsÞ ¼ T ðsÞ s2 þ s þ 1 1 But, u 2 ðsÞ ¼ u a ðsÞ: 2 Thus, 1=2 u 2 ðsÞ ¼ T ðsÞ s2 þ s þ 1 2.11 First find the mechanical constants.     1 1 1 2 ¼ 1 þ 400 ¼2  Jm ¼ Ja þ JL 400 5 4     1 1 1 2 ¼ 5 þ 800 ¼7 Dm ¼ Da þ DL  400 5 4 Now find the electrical constants. From the torque-speed equation, set vm ¼ 0 to find stall torque and set T m ¼ 0 to find no-load speed. Hence, T stall ¼ 200

vnoload ¼ 25 which, Kt T stall 200 ¼ ¼ ¼2 Ea Ra 100 Ea 100 Kb ¼ ¼ ¼4 vnoload 25 Substituting all values into the motor transfer function, KT u m ðsÞ 1 Ra J m ¼    ¼  15 1 KT Kb Ea ðsÞ s sþ s sþ Dm þ 2 Ra Jm where u m ðsÞ is the angular displacement of the armature. 1 Now u L ðsÞ ¼ u m ðsÞ. Thus, 20 1=20 u L ðsÞ  ¼  Ea ðsÞ 15 s sþ 2 2.12 Letting u 1 ðsÞ ¼ v1 ðsÞ=s

u 2 ðsÞ ¼ v2 ðsÞ=s

5

6

Solutions to Skill-Assessment Exercises

in Eqs. 2.127, we obtain   K K v1 ðsÞ  v2 ðsÞ ¼ T ðsÞ J 1 s þ D1 þ s s   K K v2 ðsÞ  v1 ðsÞ þ J 2 s þ D2 þ s s From these equations we can draw both series and parallel analogs by considering these to be mesh or nodal equations, respectively. D1

J1

T(t)

J2 1 K

– +

w1(t)

D2 w2(t)

Series analog 1 K

w 1( t ) 1 D1

J1

T(t)

w2(t)

J2

1 D2

Parallel analog

2.13 Writing the nodal equation, C

dv þ ir  2 ¼ iðtÞ dt

But, C¼1

v ¼ vo þ dv

ir ¼ evr ¼ ev ¼ evo þdv

Substituting these relationships into the differential equation, dð vo þ dvÞ þ evo þdv  2 ¼ iðtÞ dt We now linearize ev. The general form is f ðvÞ  f ðvo Þ 

 df  dv dv vo

Substituting the function, f ðvÞ ¼ ev , with v ¼ vo þ dv yields,  dev  dv evo þdv  evo  dv vo

ð1Þ

Chapter 3 Solutions to Skill-Assessment Exercises

Solving for evo þdv, e

vo þdv

Substituting into Eq. (1)

 dev  dv ¼ evo þ evo dv ¼e þ dv vo vo

ddv þ evo þ evo dv  2 ¼ iðtÞ dt

ð2Þ

Setting iðtÞ ¼ 0 and letting the circuit reach steady state, the capacitor acts like an open circuit. Thus, vo ¼ vr with ir ¼ 2. But, ir ¼ evr or vr ¼ lnir . Hence, vo ¼ ln 2 ¼ 0:693. Substituting this value of vo into Eq. (2) yields ddv þ 2dv ¼ iðtÞ dt Taking the Laplace transform, ð s þ 2ÞdvðsÞ ¼ I ðsÞ Solving for the transfer function, we obtain dvðsÞ 1 ¼ sþ2 I ðsÞ or 1 V ðsÞ ¼ about equilibrium: I ðsÞ sþ2 CHAPTER 3 3.1 Identifying appropriate variables on the circuit yields C1

R iR

iC 1 v1(t) +

L



+

C2

vo (t) –

iL

iC 2

Writing the derivative relations dvC1 ¼ iC1 dt diL L ¼ vL dt dvC2 C2 ¼ iC2 dt C1

ð1Þ

7

8

Solutions to Skill-Assessment Exercises

Using Kirchhoff’s current and voltage laws, iC1 ¼ iL þ iR ¼ iL þ

1 ðvL  vC2 Þ R

vL ¼ vC1 þ vi 1 iC2 ¼ iR ¼ ðvL  vC2 Þ R

Substituting these relationships into Eqs. (1) and simplifying yields the state equations as 1 1 1 dvC1 1 vC1 þ iL  vC 2 þ ¼ vi dt RC1 C1 RC1 RC 1 diL 1 1 ¼  vC 1 þ vi L dt L 1 dvC2 1 1 vC 1  vC 2 vi ¼ dt RC2 RC 2 RC2 where the output equation is vo ¼ vC 2 Putting the equations in vector-matrix form, 2



1 RC1

6 6 6 6 1 x_ ¼ 6  6 L 6 4 1  RC2 y ¼ ½0

0

1 C1 0 0

3 2 3 1 1 6 RC 1 7 RC1 7 7 6 7 7 6 7 7 6 1 7 7 vi ðtÞ 0 7x þ 6 7 6 L 7 7 6 7 4 1 5 1 5  RC2 RC 2 

1 x

3.2 Writing the equations of motion 

 sX 2 ðsÞ ¼ F ðsÞ s2 þ s þ 1 X 1 ðsÞ   X 3 ðsÞ ¼ 0 sX 1 ðsÞ þ s2 þ s þ 1 X 2 ðsÞ   X 2 ðsÞ þ s2 þ s þ 1 X 3 ðsÞ ¼ 0

Taking the inverse Laplace transform and simplifying, x€1 ¼  x_ 1  x1 þ x_ 2 þ f x€2 ¼ x_ 1  x_ 2  x2 þ x3 x€3 ¼  x_ 3  x3 þ x2 Defining state variables, zi,

z1 ¼ x1 ; z2 ¼ x_ 1 ; z3 ¼ x2 ; z4 ¼ x_ 2 ; z5 ¼ x3 ; z6 ¼ x_ 3

Chapter 3 Solutions to Skill-Assessment Exercises

Writing the state equations using the definition of the state variables and the inverse transform of the differential equation, _z1 ¼ z2 _z2 ¼ x€1 ¼ x_1  x1 þ x_ 2 þ f ¼ z2  z1 þ z4 þ f _z3 ¼ x_ 2 ¼ z4 _z4 ¼ x€2 ¼ x_ 1  x_2  x2 þ x3 ¼ z2  z4  z3 þ z5 _ 5 ¼ x_3 ¼ z6 z _z6 ¼ x€3 ¼ x_3  x3 þ x2 ¼ z6  z5 þ z3

The output is 2 0 6 1 6 6 6 0 _z ¼ 6 6 0 6 6 4 0 0

z5. Hence, y ¼ z5 . In vector-matrix form, 2 3 3 0 1 0 0 0 0 7 6 7 1 0 1 0 0 7 6 17 6 7 7 6 07 0 0 1 0 0 7 7 z þ 6 7 f ðtÞ; y ¼ ½ 0 6 07 7 1 1 1 1 0 7 6 7 6 7 7 4 05 0 0 0 0 1 5 0

1

0

1

0

0

0

1

0 z

0

1

3.3 First derive the state equations for the transfer function without zeros. 1 X ðsÞ ¼ RðsÞ s2 þ 7s þ 9 Cross multiplying yields 2  s þ 7s þ 9 X ðsÞ ¼ Rðs Þ

Taking the inverse Laplace transform assuming zero initial conditions, we get x€ þ 7 x_ þ 9x ¼ r Defining the state variables as, x1 ¼ x x2 ¼ x_ Hence, x_ 1 ¼ x2 x_ 2 ¼ x€ ¼ 7x_  9x þ r ¼ 9x1  7x2 þ r Using the zeros of the transfer function, we find the output equation to be, c ¼ 2x_ þ x ¼ x1 þ 2x2 Putting all equation in vector-matrix form yields, " # " # 0 1 0 r x_ ¼ xþ 1 9 7 c ¼ ½ 1 2 x

9

10

Solutions to Skill-Assessment Exercises

3.4 The state equation is converted to a transfer function using GðsÞ ¼ CðsI  AÞ

1

ð1Þ

B

where A¼



4 4

1:5 0

   2 ;B ¼ ; and C ¼ ½ 1:5 0

0:625 :

Evaluating ðsI  AÞ yields 

ðsI  AÞ ¼

sþ4

1:5

4

s



Taking the inverse we obtain 1

ðsI  AÞ

¼

1 s2 þ 4s þ 6



s

1:5

4 sþ4



Substituting all expressions into Eq. (1) yields GðsÞ ¼

3s þ 5 s2 þ 4s þ 6

3.5 Writing the differential equation we obtain d2 x þ 2x2 ¼ 10 þ df ðtÞ dt2

ð1Þ

Letting x ¼ xo þ dx and substituting into Eq. (1) yields d2 ðxo þ dxÞ þ 2ðxo þ dxÞ2 ¼ 10 þ df ðtÞ dt2

ð2Þ

Now, linearize x2 . 2

ðxo þ dxÞ  xo2 ¼ from which

  d x 2  dx ¼ 2xo dx dx xo

2 ðxo þ dxÞ ¼ xo2 þ 2xo dx

ð3Þ

Substituting Eq. (3) into Eq. (1) and performing the indicated differentiation gives us the linearized intermediate differential equation, d2 dx þ 4xo dx ¼ 2xo2 þ 10 þ df ðtÞ dt2

ð4Þ

The force of the spring at equilibrium is 10 N. Thus, since F ¼ 2x2 ; 10 ¼ 2xo2 from which pffiffiffi xo ¼ 5

Chapter 4 Solutions to Skill-Assessment Exercises

Substituting this value of xo into Eq. (4) gives us the final linearized differential equation. pffiffiffi d2 d x þ 4 5 dx ¼ df ðtÞ 2 dt

Selecting the state variables,

x1 ¼ dx x2 ¼ _dx Writing the state and output equations x_ 1 ¼ x2 pffiffiffi x_ 2 ¼€dx ¼ 4 5x1 þ df ðtÞ y ¼ x1

Converting to vector-matrix form yields the final result as     0 1 0 pffiffiffi x_ ¼ xþ df ðtÞ 1 4 5 0 y ¼ ½1

0 x

CHAPTER 4 4.1 For a step input CðsÞ ¼

10ðs þ 4Þðs þ 6Þ E D C B A þ þ þ ¼ þ s s þ 1 s þ 7 s þ 8 s þ 10 sð s þ 1Þðs þ 7Þðs þ 8Þðs þ 10Þ

Taking the inverse Laplace transform, cðtÞ ¼ A þ Bet þ Ce7t þ De8t þ Ee10t 4.2 Since a ¼ 50; T c ¼ Tr ¼

1 4 4 1 ¼ 0:02s; T s ¼ ¼ ¼ ¼ 0:08 s; and a 50 a 50

2:2 2:2 ¼ ¼ 0:044 s. a 50

4.3 a. Since poles are at 6  j 19:08; cðtÞ ¼ A þ Be6t cosð19:08t þ fÞ. b. Since poles are at 78:54 and 11:46; cðtÞ ¼ A þ Be78:54t þ Ce11:4t . c. Since poles are double on the real axis at 15 cðtÞ ¼ A þ Be 15t þ Cte15t : d. Since poles are at j 25; cðtÞ ¼ A þ B cosð25t þ fÞ. 4.4 a. b. c. d.

pffiffiffiffiffiffiffiffi vn ¼ p400 ¼ 20 and 2zvn ffiffiffiffiffiffiffiffi vn ¼ 900 ¼ 30 and 2zvn pffiffiffiffiffiffiffiffi 225ffi ¼ 15 and 2zvn vn ¼ pffiffiffiffiffiffiffi vn ¼ 625 ¼ 25 and 2zvn

¼ 12; ¼ 90; ¼ 30; ¼ 0;

;z ¼ 0:3 and system is underdamped. ;z ¼ 1:5 and system is overdamped. ;z ¼ 1 and system is critically damped. ;z ¼ 0 and system is undamped.

11

12

Solutions to Skill-Assessment Exercises

4.5 vn ¼

pffiffiffiffiffiffiffiffi 361 ¼ 19 and 2zvn ¼ 16;

;z ¼ 0:421:

p 4 ¼ 0:5 s and T p ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 0:182 s. zvn vn 1  z 2 From Figure 4.16, vn T r ¼ 1:4998. Therefore, T r ¼ 0:079 s. ffi p ffiffizp 2 Finally, %os ¼ e 1  z  100 ¼ 23:3%

Now, T s ¼

4.6

a. The second-order approximation is valid, since the dominant poles have a real part of 2 and the higher-order pole is at 15, i.e. more than five-times further. b. The second-order approximation is not valid, since the dominant poles have a real part of 1 and the higher-order pole is at 4, i.e. not more than five-times further. 4.7

1 0:8942 1:5918 0:3023   þ . s s þ 20 s þ 10 s þ 6:5 But 0:3023 is not an order of magnitude less than residues of second-order terms (term 2 and 3). Therefore, a second-order approximation is not valid. 1 0:9782 1:9078 0:0704 b. Expanding G(s) by partial fractions yields GðsÞ ¼ þ .   s s þ 20 s þ 10 s þ 6:5 But 0.0704 is an order of magnitude less than residues of second-order terms (term 2 and 3). Therefore, a second-order approximation is valid. a. Expanding G(s) by partial fractions yields GðsÞ ¼

4.8 See Figure 4.31 in the textbook for the Simulink block diagram and the output responses. 4.9 a. Since BUðsÞ ¼

 s sI  A ¼ " #3 0 1=ðs þ 1Þ

  sþ5 2 1 ; ðsI  AÞ 1 ¼ 2 s þ 5s þ 6 3 sþ5

2 s

 :

Also,

.

1 1  The state vector is XðsÞ ¼ ðsI  AÞ ½ xð0Þ þ BUðsÞ ¼ ð s þ 1 Þ ð s þ 2Þðs þ 3Þ "  #  2 s2 þ 7s þ 7 5s2 þ 2s  4 . The output is Y ðsÞ ¼ ½ 1 3 XðsÞ ¼ ¼ 2 s  4s  6 ðs þ 1Þðs þ 2Þðs þ 3Þ 17:5 12 0:5 þ  . Taking the inverse Laplace transform yields yðtÞ ¼  sþ1 sþ2 sþ3 t 2t 0:5e  12e þ 17:5e3t . b. The eigenvalues are given by the roots of jsI  Aj ¼ s2 þ 5s þ 6, or 2 and 3. 4.10   1 sþ5 2 . Taking the s2 þ 5s þ 4 2 s 2 sþ5 Laplace transform of each term, the state transition matrix is given by 3 2 2 t 2 4t 4 t 1 4t e  e 6 3e  3e 7 3 3 7: FðtÞ ¼ 6 4 2 5 4 1 2 4t t 4t t  e þ e  e þ e 3 3 3 3

a. Since ðsI  AÞ ¼



s

2

 1 ; ðsI  AÞ ¼

Chapter 5 Solutions to Skill-Assessment Exercises

2

4 ðttÞ 1 2 eðttÞ  2 e4ðttÞ 3  e4ðttÞ 6 3e 7 3 3 7 and 3 b. Since Fðt  tÞ ¼ 6 5 2 2 4 1 4  eðttÞ þ e4ðttÞ  eðttÞ þ e4ðttÞ 3 3 3 3 3 2 2 t t 2 2t 4t   7 6 3e e  3e e 0 7: BuðtÞ ¼ 2t ; Fðt  tÞBuðtÞ ¼ 6 5 4 1 4 e 2t 4t t t  e e þ e e 3 3 Rt Thus, xðtÞ ¼ FðtÞxð0Þ þ 0 Fðt  tÞ 3 2 10 t 4 4t 2t e e  e  7 6 3 3 7 BUðtÞdt ¼ 6 5 4 5 8 t 2t 4t  e þe þ e 3 3 c. yðtÞ ¼ ½ 2 1 x ¼ 5et  e2t

CHAPTER 5 5.1 Combine the parallel blocks in the forward path. Then, push pickoff point.

1 to the left past the s

s

R(s)

+

– s2 +

1 s

1 s

C(s)



s

Combine the parallel feedback paths and get 2s. Then, apply the feedback formula, s3 þ 1 simplify, and get, T ðsÞ ¼ 4 . 2s þ s2 þ 2s

5.2

16 GðsÞ ¼ , where 1 þ GðsÞHð sÞ s2 þ as þ 16 a 16 and H ðsÞ ¼ 1. Thus, vn ¼ 4 and 2zvn ¼ a, from which z ¼ . and GðsÞ ¼ 8 sðs þ aÞ   % ln a 100 But, for 5% overshoot, z ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   ¼ 0:69. Since, z ¼ 8 ; a ¼ 5:52. % p2 þ ln2 100

Find the closed-loop transfer function, T ðsÞ ¼

13

14

Solutions to Skill-Assessment Exercises

5.3 Label nodes.

R(s) +



s –

+

s

N1 (s)

N2 (s)

N3 (s)

+

1 s

N5 (s)

1 s

N4 (s)

N6 (s)

s

N7 (s)

Draw nodes. N1(s)

R(s)

N3(s)

N2(s) N5(s)

N4(s)

C (s)

N6(s)

N7(s)

Connect nodes and label subsystems. −1

R(s)

1 N1 (s)

s

N2 (s)

s

N3 (s)

1

1 −1

1 N4 (s) s

C(s)

1 N5 (s)

1 s

N6 (s)

s

N7 (s)

Eliminate unnecessary nodes. –1

R(s)

1

s

s

1 s –s

1 s

C(s)

C(s)

Chapter 5 Solutions to Skill-Assessment Exercises

5.4 Forward-path gains are G1 G2G 3 and G 1G 3. Loop gains are G1 G2 H 1 ; G2 H 2; and G3 H 3. Nontouching loops are ½G1 G2 H 1 ½ G3 H 3 ¼ G1 G2 G3 H 1 H 3 and ½ G2 H 2 ½G3 H 3  ¼ G2 G3 H 2 H 3 . Also, D ¼ 1 þ G1 G2 H 1 þ G2 H 2 þ G3 H 3 þ G1 G2 G3 H 1 H 3 þ G2 G3 H 2 H 3 : Finally, D1 ¼ 1 and D2 ¼ 1. P Substituting these values into T ðsÞ ¼ T ðsÞ ¼

CðsÞ ¼ Rð sÞ

k

T k Dk yields D

G1 ðsÞG3 ðsÞ½1 þ G2 ðsÞ ½ 1 þ G2 ðsÞH 2 ðsÞ þ G1 ðsÞG2 ðsÞH 1 ðsÞ½ 1 þ G3 ðsÞH 3 ðsÞ

5.5 The state equations are, _x1 ¼ 2x1 þ x2 _x2 ¼ 3x2 þ x3 _x3 ¼ 3x1  4x2  5x3 þ r y ¼ x2

Drawing the signal-flow diagram from the state equations yields 1

r

1

1 s

x3

1 s

1

–5

1 s

1

x2

–3

x1

y

–2

–4 –3

5.6 100ðs þ 5Þ we draw the signal-flow graph in controller canonical form s2 þ 5s þ 6 and add the feedback. From Gð sÞ ¼

100

r

1

1 s

1 s

x1

x2

500 y

–5 –6

–1

15

16

Solutions to Skill-Assessment Exercises

Writing the state equations from the signal-flow diagram, we obtain x¼

"

105

506

1

0

y ¼ ½ 100

#

" # 1 r xþ 0

500 x

5.7 From the transformation equations, P1 ¼



3 2 1 4



Taking the inverse, 0:4 0:2 P¼ 0:1 0:3 



Now, 1

P AP ¼

"

3

2

1

4

#"

1

"

6:5

3

#"

0:4

0:2

#

¼ 4 6 0:1 0:3 " #" # " # 3 3 2 1 1 ¼ P B¼ 3 1 4 11 " # 0:4 0:2 CP ¼ ½ 1 4  ¼ ½ 0:8 1:4  0:1 0:3

"

6:5

8:5

9:5

11:5

#

Therefore, _z ¼

8:5

9:5 11:5 y ¼ ½ 0:8

5.8 First find the eigenva...


Similar Free PDFs