1.3.1 1.3.2 TEST FOR Convergence PDF

Title 1.3.1 1.3.2 TEST FOR Convergence
Author MUHAMMAD LUQMAN HAKI BIN MOHD ZAMRI
Course Calculus III For Engineers
Institution Universiti Teknologi MARA
Pages 10
File Size 234.1 KB
File Type PDF
Total Downloads 117
Total Views 589

Summary

Download 1.3.1 1.3.2 TEST FOR Convergence PDF


Description

1.3 TEST FOR CONVERGENCE 1.3.1 The Divergence Test Theorem: i. If lim 𝑎𝑛  0, then the series diverges. 𝑛→∞

If lim 𝑎𝑛 = 0, then the series may either converges or diverges.

ii.

𝑛→∞

Example for Theorem i:  ( ∑ 𝑛=1

𝑛

𝑛+1

)=

1

𝑛→∞

𝑛+1

lim 𝑎𝑛 = lim (

𝑛→∞

2

2

3

4

+ 3 + 4 + 5 + ⋯…+

𝑛

)

1

𝑛

𝑛+1

+⋯

= lim ( 1⁄ ) 1+ 𝑛→∞

𝑛

 0 =1 Since lim 𝑎𝑛  0, then the series diverges. 𝑛→∞

Example for Theorem ii: 1

1

1

1. ∑𝑛=1 ( 2𝑛 ) = 2 +

22

1

1

1 2

lim 𝑎𝑛 = lim ( 𝑛 ) = 2

𝑛→∞

𝑛→∞

1

1

+ 23 + 24 + ⋯ . . + 2𝑛 + ⋯ .. =0

hence, series either converges or diverges

(Remember: the 0 only tells that the series is either converges or diverges. It is NOT the limit or sum of the series) The series is actually a GS with 𝑎 =

1

2

1

and 𝑟 = 2.

Since |r| < 1, the series converges and has the sum of 𝑆=

𝑎 1−𝑟

1

= 1

1 2

1

1−2 1

=1 1

1

1 2. ∑ 𝑛=1 ( 𝑛) = 1 + 2 + 3 + 4 + ⋯ . . + 𝑘 + ⋯ .. 1

lim 𝑎𝑛 = lim ( ) = 𝑛

𝑛→∞

𝑛→∞

1



=0

hence, series either converges or diverges.

But, since it is a harmonic series, then it is diverges.

Due to this phenomena, Theorem ii earlier can be extended to another theorem, iii. If the series ∑ 𝑛=1 𝑢𝑛 converges, then lim 𝑢𝑛 = 0 𝑛→∞

Example 1. Apply Divergence Test and state what it tells about the series. 𝑘 a) ∑𝑘=1 ( 𝑘) 𝑒 𝑘

1

lim ( 𝑘) = lim ( 𝑘) = 0 , 𝑒 𝑒

𝑘→∞

𝑘→∞

series either converges or diverges

b) ∑𝑘=1 ln 𝑘 lim (ln 𝑘) = ln  =   0 , series diverges 𝑘→∞

1

c) ∑𝑘=1 (√𝑘) 1

1

lim ( ) = lim ( √𝑘

𝑘→∞

√

𝑘→∞

𝑘+1

d) ∑𝑘=1 (𝑘+2) lim (

𝑘→∞

𝑘+1

1+1 ⁄

) = lim ( 1+2 ⁄𝑘 ) = 1 0 , 𝑘+2

2. Given 𝑎𝑛 = a) {𝑎𝑛 }

1

) =  = 0 , series either converges or diverges

𝑘→∞

(𝑛+1)2 . 𝑛(𝑛+2)

𝑘

Determine if the following converges or diverges.

∞ 𝑛=1

lim (𝑎𝑛 ) = lim (

𝑛→∞

𝑛→∞

= lim (

=

series diverges

(𝑛+1)2

)

𝑛(𝑛+2) 𝑛2 +2𝑛+1

)

𝑛2 +2𝑛 1 + 2 ⁄𝑛 + 1⁄ 2 𝑛 ) lim ( 1+2 ⁄𝑛 𝑛→∞ 𝑛→∞

=1 

Hence, the sequence converges.

b) ∑𝑘=1 𝑎𝑛 By Divergence Test,

(𝑛+1)2

lim (𝑎𝑛 ) = lim ( 𝑛(𝑛+2))

𝑛→∞

𝑛→∞

𝑛2 +2𝑛+1 ) 𝑛2 +2𝑛 𝑛→∞ 1 + 2 ⁄𝑛 + 1⁄ 2 𝑛 ) lim ( 1+2 ⁄𝑛 𝑛→∞

= lim (

=

=1 0

Hence, the series diverges.

EX. 9.2: No. 59-75

1.3.2 The Integral Test Let ∑𝑛=1 𝑢𝑛 be a series with positive terms. If f is a function that is decreasing + and continuous on the interval [a, +), and 𝑢𝑛 = 𝑓(𝑛), then ∑𝑛=1 𝑢𝑛 and ∫𝑎 𝑓(𝑥)𝑑𝑥 will be both converge or both diverge. Example Use Integral Test to determine whether the series converges or diverges. 1

 1. ∑𝑘=1 (𝑘)

1

Let 𝑓(𝑥) = 𝑥 +

∫𝑎

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

𝑐1

= lim ∫1 𝑥 𝑑𝑥 𝑐→∞

𝑐 = lim [ln 𝑥]1 𝑐→∞

= lim (ln 𝑐 − ln 1) 𝑐→∞

= ln 

=

Since the integral diverges, so the series also diverges. 1

 2. ∑ 𝑘=1 (𝑘 2 )

1

Let 𝑓(𝑥) = 𝑥2 +

∫𝑎

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

𝑐 1

= lim ∫1 𝑥2 𝑑𝑥 𝑐→∞

1

= lim [− 𝑥] 𝑐→∞

1

𝑐 1

1

= lim (− 𝑐 + 1) 𝑐→∞ 1

= − + 1

=1

Since the integral converges, so the series also converges.

 3. ∑ 𝑛=1 (

1

𝑛2 +4

)

1

Let 𝑓(𝑥) = 𝑥2 +4 +

∫𝑎

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

𝑐

1

= lim ∫1 𝑥2 +4 𝑑𝑥 𝑐→∞

𝑐 1 𝑥 = lim [ 2 𝑡𝑎𝑛−1 (2)] 1 𝑐→∞ 1

1

𝑐

= 2 lim 𝑡𝑎𝑛−1 ( 2) − 𝑡𝑎𝑛−1 (2) 1

𝑐→∞

1

1

= 2 lim 𝑡𝑎𝑛−1  − 𝑡𝑎𝑛−1 ( 2) 𝑐→∞

𝑡𝑎𝑛−1 ( ) = 26.565  = 0.46𝑟𝑎𝑑 2

1 𝜋

= 2 ( 2 − 0.46) = 0.555

Since the integral converges, so the series also converges.  4. ∑ 𝑛=1 (

𝑛

𝑛2 +7)3

𝑥

Let 𝑓(𝑥) = (𝑥2 +7)3 +

∫𝑎

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

𝑐

𝑥

= lim ∫1 2 3 𝑑𝑥 (𝑥 +7) 𝑐→∞

𝑐 2 +7 𝑥 𝑑𝑢 (𝑢)3 2𝑥

= lim ∫8 𝑐→∞ 1

𝑐 2 +7 1

= 2 lim ∫8 𝑐→∞

1

(𝑢 )3

= lim [− 4 𝑢 −2 ] 𝑐→∞ 1

Let 𝑢 = 𝑥 2 + 7, 𝑑𝑢 = 2𝑥 𝑑𝑥, 𝑑𝑥 =

= 256

𝑑𝑢

𝑐2 + 7 8

𝑐→∞

Since the integral converges, so the series also converges.

Alternative way to deal with the substitution: 𝑥

Let 𝑓(𝑥) = (𝑥2 +7)3 +

∫𝑎

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

2𝑥

when 𝑥 = 1 → 𝑢 = 8, when 𝑥 = 𝑐→ 𝑢 = 𝑐 2 + 7

= − 4 lim[(𝑐 2 + 7)−2 − 8−2] 1

𝑑𝑢

𝑐

= lim ∫1 2 𝑥 3 𝑑𝑥 (𝑥 +7) 𝑐→∞

Let 𝑢 = 𝑥 2 + 7, 𝑑𝑢 = 2𝑥 𝑑𝑥, 𝑑𝑥 =

∫(

=

1

(𝑥2 +7)

= 2 lim [ 𝑐→∞ 1

−2

−2

]

𝑐

1

= − 4 lim[(𝑥 2 + 7)−2] 𝑐→∞

1

=

𝑥 𝑑𝑢 𝑢)3 2𝑥

1

2

1 2

1

∫ (𝑢)3 𝑑𝑢

∫ 𝑢 −3 𝑑𝑢 =

𝑢−2 −2

𝑐 1

= − 4 lim[(𝑐 2 + 7)−2 − (12 + 7)−2] 𝑐→∞

1

= − 4 ((∞ + 7)−2 − 8−2 ) 1

1

1

= − 4 ( (∞+7)2 − 64) 1

1

1

= − ( ∞ − 64) 1

4

= 256

Since the integral converges, so the series also converges.

 5. ∑ 𝑘=1 (

2 𝑒 ⁄𝑘

𝑘2

)

Let 𝑓(𝑥) = +

∫𝑎

2

𝑒 ⁄𝑥 𝑥2

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

2 𝑐 𝑒 ⁄𝑥

= lim ∫1 𝑐→∞

𝑑𝑥

𝑥2

Let 𝑢 =

2 𝑥

= 2𝑥 −1

𝑑𝑢 = −2𝑥 −2 = −

𝑑𝑥 = − 2

= lim ∫2𝑐 𝑐→∞

𝑒𝑢

𝑥2

2

= − lim ∫2𝑐 𝑐→∞

𝑑𝑢

𝑥2

𝑒𝑢 2

2

1

2

𝑑𝑢

= − lim [𝑒 𝑐 − 𝑒 2 ] 2 𝑐→∞

2

𝑑𝑥

(− ) 𝑑𝑢 2

= − 2 lim [𝑒 𝑢 ] 𝑐 𝑐→∞ 2 1

𝑥2

2

𝑥2

when 𝑥 = 1 → 𝑢 = 2, when 𝑥 = 𝑐 → 𝑢 =

2 𝑐

𝑑𝑢

2𝑥

1

= − lim [𝑒 0 − 𝑒 2 ] =

2 𝑐→∞ 1 − 2 (1 −

𝑒 2)

Since the integral converges, so the series also converges.

Alternative way to deal with the substitution: Let 𝑓(𝑥) = +

∫𝑎

2

𝑒 ⁄𝑥 𝑥2

𝑐

𝑓(𝑥)𝑑𝑥 = lim ∫1 𝑓(𝑥)𝑑𝑥 𝑐→∞

2 𝑐 𝑒 ⁄𝑥

= lim ∫1 𝑐→∞

𝑥2

𝑑𝑥

Let 𝑢 =

2

𝑥

= 2𝑥 −1

𝑑𝑢 = −2𝑥 −2 = −

𝑒𝑢

𝑥2

𝑑𝑥 =

𝑥2 − 2

∫ 𝑥2 (− 2 ) 𝑑𝑢 = − ∫ =

2

𝑒𝑥 − lim [ 2 ] 𝑐→∞ 1

1

2

𝑑𝑥

𝑑𝑢 = −

𝑒𝑢 2

𝑐

1

2 𝑥

= − lim [𝑒 ] 2 𝑐→∞

𝑑𝑢

𝑒𝑢

2

𝑥2

2 𝑐

𝑐

1

2

= − lim (𝑒 − 𝑒1 ) 2 1

𝑐→∞ 2

= − (𝑒 ∞ − 𝑒 2 ) 2

1

= − (𝑒 0 − 𝑒 2 ) 2

1

= − (1 − 𝑒 2 ) 2

Since the integral converges, so the series also converges.

EX. 9.3, No. 1-7

1.3.2.1 p Series Theorem A p-series which is of the form 1

1

 ∑𝑘=1 (𝑘 𝑝 ) = 1 +

-

1

+ 3𝑝 + ⋯ . . +

2𝑝

will converge if 𝑝 > 1

1

𝑘𝑝

+ ⋯ ..

(𝑝 > 0)

will diverges if 0 < 𝑝 ≤ 1

For example: 1

1

1

 ∑ 𝑘=1 (𝑘 ) = 1 + 2 + 1 𝑘

1 22

√𝑘

√2

 ∑ 𝑘=1 ( 2) = 1 + 1

 ∑ 𝑘=1 ( )=1+ 4

1

  ∑ 𝑘=1 𝑘 − 3 = ∑ 𝑛=1 3

3

1

+ ⋯..+ + ⋯… 𝑘 1

+ 32 + ⋯ . . + +

1

√𝑘 4

1

√3

1

𝑘2

+ ⋯..+

=1+

3

1

√24

1

(p=1, diverges)

+ ⋯ ..

√𝑘

+3

(p=2, converges)

+ ⋯..

1

√34

(p=1/2, diverges)

…..+ 3

1

√𝑘 4

+ ⋯.

(p=4/3, converges)

Note: Do not get confused with Geometric Series 1

 ( ∑ 𝑘=1 )= 𝑝𝑘 1

1 𝑝

1

1

1 2𝑝

+ 3𝑝 +

+ 𝑝2 + 𝑝3 + ⋯ . . …

 ( ∑ 𝑘=1 )= 1+ 𝑘𝑝

1

1

4𝑝

is a GS with 𝑟 =

…..…

is a p-series

1.3.2.2 Harmonic Series A harmonic series is a series of the form: 1

1

 ∑ 𝑘=1 (𝑘 ) = 1 + 2 +

1

3

1

1

+4 … . . + + ⋯ … 𝑘

and it is a divergent series.

Example 9

1. Show that ∑ 𝑘=1 ( ) is a divergent series. 𝑘 1

9   ( ) ∑ 𝑘=1 (𝑘) = 9 ∑𝑘=1 𝑘 1

1

1

1

= 9(1 + 2 + 3 + 4 … . . + 𝑘 + ⋯ … )

1

𝑝

which is a harmonic series, hence divergent. 1

 2. Determine whether ∑𝑛=1 ( 𝑛3 + 1

1

 ∑𝑛=1 (𝑛3 +

3𝑛

1

1

3𝑛

) is a convergent or divergent series. 1

  ( 𝑛) ) = ∑𝑛=1 ( 3 ) + ∑ 𝑛=1 𝑛 3

1

p-series, 𝑝 = 3 > 1

GS, 𝑟 =

hence, converges

hence, converges

3

1, hence converges 1

 ( ) b) ∑𝑛=1 5𝑛

1

1

 This is harmonic series as 5 ∑ 𝑛=1 ( ), hence diverges 𝑛

2 𝑛

 c) ∑𝑛=1 (5)

2

This is GS, 𝑟 = < 1, hence converges 5

 ( 5. Determine whether ∑𝑛=1  ∑𝑛=1 (

2√𝑛 𝑛

2√𝑛

2

𝑛



2

5𝑛

 − 5𝑛 ) = ∑ 𝑛=1 (

 ( ∑ 𝑛=1

) is a convergent or divergent series

2√𝑛 𝑛

2√𝑛 𝑛

)

2

 ( 𝑛) ) − ∑ 𝑛=1 5 2

 ∑𝑛=1 ( 𝑛) 5

1

 ( = 2 ∑𝑛=1 1) 𝑛2

p-series, 𝑝 =

1

2

≤1

hence, diverges

1

 ( ) = 2 ∑ 𝑛=1 5𝑛

GS, 𝑟 =

1

5...


Similar Free PDFs