14.7 Homework-Max. and Min. Values PDF

Title 14.7 Homework-Max. and Min. Values
Author Lalitha Madduri
Course Multivariable Calculus
Institution Columbia University in the City of New York
Pages 12
File Size 1.2 MB
File Type PDF
Total Downloads 30
Total Views 147

Summary

Professor Drew Youngren...


Description

10/24/2017

14.7 Homework-Max. and Min. Values

WebAssign 14.7HomeworkMax.andMin.Values(Homework) CurrentScore:–/19

ClaireJenkins APMAE2000,section001,Fall2017 Instructor:DrewYoungren

Due:Thursday,October19201708:40AMEDT

Theduedateforthisassignmentispast.Yourworkcanbeviewedbelow,butnochangescanbemade.  Important!Beforeyouviewtheanswerkey,decidewhetherornotyouplantorequestanextension.YourInstructormaynotgrantyouanextensionifyou haveviewedtheanswerkey.Automaticextensionsarenotgrantedifyouhaveviewedtheanswerkey. RequestExtension

1. –/1pointsSCalcET814.7.VE.002.

Watchthevideobelowthenanswerthequestion.

Thefunction f(x,y) hasarelativemaximumat(x,y)when fx(x,y)=fy(x,y)=0,fxx(x,y)>0, and f

(x,y)fyy(x,y)−[fxy(x,y)]2>0. rue False

SolutionorExplanation False





http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

1/12

10/24/2017

14.7 Homework-Max. and Min. Values

2. –/1pointsSCalcET814.7.003.

Usethelevelcurvesinthefiguretopredictthelocationofthecriticalpointsoffandwhetherfhasasaddlepointoralocal maximumorminimumateachcriticalpoint.ThenusetheSecondDerivativesTesttoconfirmyourpredictions.(Orderyour answersbytheirorderedpairs,fromsmallesttolargestx.) f(x,y)=4+x3+y3−3xy (x,y)= (NoResponse) 



 (NoResponse) 



saddlepoint

(x,y)= (NoResponse) 



 (NoResponse) 



localminimum

SolutionorExplanation Inthefigure,apointatapproximately(1,1)isenclosedbylevelcurveswhichareovalinshapeandindicatethataswemove awayfromthepointinanydirectionthevaluesoffareincreasing.Hencewewouldexpectalocalminimumatornear(1,1). Thelevelcurvesnear(0,0)resemblehyperbolas,andaswemoveawayfromtheorigin,thevaluesoffincreaseinsome directionsanddecreaseinothers,sowewouldexpecttofindasaddlepointthere. Toverifyourpredictions,wehave f(x,y)=4+x3+y3−3xy 

 fx(x,y)=3x2−3y,fy(x,y)=3y2−3x.Wehavecritical 2 pointswherethesepartialderivativesareequalto0: 3x −3y=0,3y2−3x=0. Substituting y=x2 fromthefirstequation intothesecondequationgives 3(x2)2−3x=0 

 3x(x3−1)=0 

 x=0orx=1. Thenwehavetwocriticalpoints,

(0,0)and(1,1).Thesecondpartialderivativesare fxx(x,y)=6x,fxy(x,y)=−3,andfyy(x,y)=6y,soD(x,y)=fxx(x,y)fyy(x,y)−[fxy(x,y)]2=(6x)(6y)−(−3)2=36xy−9. Then D(0,0)=36(0)(0)−9=−9,andD(1,1)=36(1)(1)−9=27.SinceD(0,0)0andfxx(1,1)>0, fhasalocalminimumat(1,1).





http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

2/12

10/24/2017

14.7 Homework-Max. and Min. Values

3. –/1pointsSCalcET814.7.507.XP.

Findthelocalmaximumandminimumvaluesandsaddlepoint(s)ofthefunction.Ifyouhavethreedimensionalgraphing software,graphthefunctionwithadomainandviewpointthatrevealalltheimportantaspectsofthefunction.(Enteryour answersasacommaseparatedlist.Ifananswerdoesnotexist,enterDNE.) f(x,y)=7−2x+4y−x2−4y2 localmaximumvalue(s)

(NoResponse) 

localminimumvalue(s)

(NoResponse) 

saddlepoint(s)



(x,y,f) = (NoResponse) 

SolutionorExplanation ClicktoViewSolution







4. –/1pointsSCalcET814.7.015.

Findthelocalmaximumandminimumvaluesandsaddlepoint(s)ofthefunction.Ifyouhavethreedimensionalgraphing software,graphthefunctionwithadomainandviewpointthatrevealalltheimportantaspectsofthefunction.(Enteryour answersasacommaseparatedlist.Ifananswerdoesnotexist,enterDNE.) f(x,y)=5excos(y) localmaximumvalue(s)

(NoResponse) 

localminimumvalue(s)

(NoResponse) 

saddlepoint(s)



(x,y,f) = (NoResponse) 

SolutionorExplanation ClicktoViewSolution







5. –/1pointsSCalcET814.7.025.

Useagraphorlevelcurvesorbothtofindthelocalmaximumandminimumvaluesandsaddlepointsofthefunction.Thenuse calculustofindthesevaluesprecisely.(Enteryouranswersasacommaseparatedlist.Ifananswerdoesnotexist,enterDNE.) f(x,y)=sin(x)+sin(y)+sin(x+y)+9,0≤x≤2π,0≤y≤2π localmaximumvalue(s) (NoResponse)  

localminimumvalue(s) (NoResponse)  saddlepoint(s)

(x,y,f) =

(NoResponse) 

SolutionorExplanation ClicktoViewSolution







http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

3/12

10/24/2017

14.7 Homework-Max. and Min. Values

6. –/1pointsSCalcET814.7.505.XP.

FindtheabsolutemaximumandminimumvaluesoffonthesetD. f(x,y)=4x+6y−x2−y2+9,  D={(x,y)|0≤x≤4,0≤y≤5} absolutemaximumvalue (NoResponse)  absoluteminimumvalue (NoResponse) 

 

22  9

SolutionorExplanation ClicktoViewSolution





7. –/1pointsSCalcET814.7.037.

FindtheabsolutemaximumandminimumvaluesoffonthesetD. f(x,y)=2x3+y4+3,D={(x,y)|x2+y2≤1}  5 absolutemaximumvalue (NoResponse)    1 absoluteminimumvalue (NoResponse)  SolutionorExplanation ClicktoViewSolution







http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

4/12

10/24/2017

14.7 Homework-Max. and Min. Values

8. –/1pointsSCalcET814.7.AE.005.

VideoExample



EXAMPLE5 Findtheshortestdistancefromthepoint (1,0,−3) tothe plane x+2y+z=25.  SOLUTION Thedistancefromanypoint(x,y,z)tothepoint (1,0,−3) is (NoResponse) 

d=

2



+y2+(z+3)2



butif (x,y,z) liesontheplane x+2y+z=25, then andsowehave

z= (NoResponse)  d=

(NoResponse) 



2

+y2+(28−x−2y)2. Wecan



minimizedbyminimizingthesimplerexpression d2=f(x,y)= (NoResponse) 



2

+y2+(28−x−2y)2.



Bysolvingtheequations fx = 2(x−1)−2(28−x−2y)=4x+4y− (NoResponse)  fy = 2y−4(28−x−2y)=4x+10y− (NoResponse) 



wefindthattheonlycriticalpointis (x,y)= (NoResponse) 

 112 

 .

Since fxx=4,  fxy=4, and fyy=10, wehave D(x,y)=fxxfyy−(fxy)2=24>0 and fxx>0, sobytheSecond DerivativesTestfhasalocalminimumat (x,y)= (NoResponse) 

 . Intuitively,wecanseethatthislocal

minimumisactuallyanabsoluteminimumbecausetheremustbeapointon thegivenplanethatisclosestto (1,0,−3). If x= (NoResponse) 

d



11/2 and y= (NoResponse) 

(NoResponse) 

=



2



9  , then

+y2+(28−x−2y)2



=

(NoResponse) 



2 

+ 9

2 

+

9 2 2 

= (NoResponse) 

.

Theshortestdistancefrom (1,0,−3) totheplane x+2y+z=25 is (No

Response) 



.



http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

5/12

10/24/2017

14.7 Homework-Max. and Min. Values

9. –/1pointsSCalcET814.7.041.MI.

Findtheshortestdistance,d,fromthepoint (7,0,−6) totheplane x+y+z=6. 

d= (NoResponse) 



SolutionorExplanation ClicktoViewSolution









10.–/1pointsSCalcET814.7.043.

Findthepointsonthecone z2=x2+y2 thatareclosesttothepoint (8,2,0).  (x,y,z) =

(NoResponse) 

(x,y,z) =

(NoResponse) 

 (smallerzvalue)  

(largerzvalue)

SolutionorExplanation ClicktoViewSolution







11.–/1pointsSCalcET814.7.045.MI.

Findthreepositivenumberswhosesumis260andwhoseproductisamaximum.(Enteryouranswersasacommaseparated list.)

(NoResponse) 



SolutionorExplanation ClicktoViewSolution









http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

6/12

10/24/2017

14.7 Homework-Max. and Min. Values

12.–/1pointsSCalcET814.7.AE.006.

EXAMPLE6 Arectangularboxwithoutalidistobemadefrom12m2of cardboard.Findthemaximumvolumeofsuchabox. SOLUTION Letthelength,width,andheightofthebox(inmeters)bex,y,  VideoExample

andz,asshowninthefigure.Thenthevolumeoftheboxis



V=xyz. WecanexpressVasafunctionofjusttwovariables,xandybyusingthe factthattheareaofthefoursidesandthebottomoftheboxis 2xz+ (NoResponse) 

+xy=12.

Solvingthisequationforz,wegetz= (NoResponse) 

,sothe

expressionforVbecomes

V(x,y)= (NoResponse) 

.

Wecomputethepartialderivatives.

∂V = ∂x 

(NoResponse) 

∂V = ∂y

(NoResponse)  IfVisamaximum,then ∂V/∂x=∂V/∂y=0, but x=0 or y=0 gives V= (NoResponse) 



0  , sowemustsolvetheequations

12−2xy−x2 = 0 12−2xy−y2 = 0. Theseimplythat x2=y2 andso x=y. (Notethatxandymustbothbe positiveinthisproblem.)Ifweput x=y ineitherequationweget 12−3x2=0, whichgives x=2,  y=2, and z=(12−2·2)/[2(2+2)]= (NoResponse) 



1  . Wecouldusethe

SecondDerivativesTesttoshowthatthisgivesalocalmaximumofV,soit mustoccurwhen x=2,  y=2, and z= (NoResponse)  V=2·2· (NoResponse) 



1  = (NoResponse) 

maximumvolumeoftheboxis (NoResponse) 





 

1  . Then 4  , sothe

4  m3.



13.–/1pointsSCalcET814.7.047.

Findthemaximumvolumeofarectangularboxthatisinscribedinasphereofradiusr.

(NoResponse) 



SolutionorExplanation ClicktoViewSolution







http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

7/12

10/24/2017

14.7 Homework-Max. and Min. Values

14.–/1pointsSCalcET814.7.053.

Acardboardboxwithoutalidistohaveavolumeof10,976cm3.Findthedimensionsthatminimizetheamountofcardboard used.(Letx,y,andzbethedimensionsofthecardboardbox.) (x,y,z)= (NoResponse) 

 

SolutionorExplanation ClicktoViewSolution







http://www.webassign.net/web/Student/Assignment-Responses/view_key?dep=16936810

8/12

10/24/2017

14.7 Homework-Max. and Min. Values

15.–/1pointsSCalcET814.7.TEC.001.

Concept

Threefunctionsaregraphedalongwiththeircontourmaps.Foreachsurface,usethecontourmaptoidentifythe approximatelocationsofcriticalpoints.Thenlookatthegraphtoclassifyeachcriticalpointasalocalmaximumor minimumorsaddlepoint.Afterward,youcanverifyyourresultsanalytically. Instructions

Selectoneofthethreesurfacesfromthepulldownmenu.Theequationofthefunctionisshownattheright.Inthe exercises,youwillusethecontourmaponthelefttoidentifythelocationsofanycriticalpoints.Thendeterminewhether eachcriticalpointisalocalmaximum,localminimum,orsaddlepointbyexaminingthegraphofthefunction.Youmay wishtorotatethe3Daxeswiththemousefordifferentviewsofthesurface. Simulation

ClickheretoaccesstheTECsimulation. Exercise

CompletethefollowingforSurfaceA: z=x4+2y2−4xy. (a)Usethecontourmaptoestimatethelocationofeachcriticalpointvisually.Byexaminingthegraphofthefunction, determinewhethereachcriticalpointisalocalmaximum,localminimum,orsaddlepoint.(Orderyouranswersbytheir orderedpairs,fromsmallesttolargestx.) (x,y)= (NoResponse) 



 (NoResponse) 



localminimum

(x,y)= (NoResponse) 



 (NoResponse) 



saddlepoint

(x,y)= (NoResponse) 



 (NoResponse) 



localminimum

(b)UsetheSecondDerivativesTesttodeterminethelocalmaximum,localminimum,andsaddlepoint(s)ofthefunction. Howaccuratewereyourestimatesfrompart(a)? (NoResponse) Key:Answersmayvary. Thisanswerhasnotbeengradedyet.

SolutionorExplanation (a)Thecriticalpointsare(1,1),(−1,−1)and(0,0),where(1,1)and(−1,−1)arelocalminimumsand(0,0)isasaddle point. Thelevelcurvesnear(1,1)and(−1,−1)areovalinshapewhichindicatesthatthesepointsareeitheralocalmaximumor minimum.Ifthevalueofzincreasesaswemoveawayfromthesepoints,thentheyarelocalminimumsandviceversa.The valuesofzarenotdepictedonthecontourmap.Therefore,wecannotdeterminewhetherthesepointsarealocalmaximumor minimumbyjustusingthecontourmap.However,bylookingatthegraphofthefunctionweseethattheyarelocalminimums. Ontheotherhand,thelevelcurvesnear(0,0)resemblehyperbolas.Movingawayfromthispoint,weseethatthevaluesofz decreaseinonedirection,butincreaseinotherdirections.Therefore,(0,0)isasaddlepoint. (b)Theestimatesinpart(a)werefoundaccurately.Inordertofindthecriticalpointsofthefunction z=x4+2y2−4xy, we havetofindthesolutionstothefollowingequations: d d z=4x3−4y=0, z=4y−4x=0.  dx dy Thesolutionsarecalledcriticalpoints,whichare(1,1),(−1,−1)and(0,0).Thenextstepistoevaluatethefunction D=zxxzyy−(zxy)2=(12x2)(4)−(−4)2=48x2−16  forallthecriticalpoints. Notethat D(1,1)=32>0 and zxx(1,1)=12>0. Therefore,bythesecondderivativetest,(1,1)isalocalminimum.At (−1,−1),wehave D(−1,−1)=32>0 and zxx(−1,−1)=12>0. Therefore,(−1,−1)isalocalminimum.Finally, D(0,0)=−160 and zxx(0,0)=4>0. Therefore,bythesecondderivativetest,(0,0)isalocalminimum.Atthe 1 1 point 1, wehave D 1, 1 =−12...


Similar Free PDFs