Biomembran Fluidität info 2 PDF

Title Biomembran Fluidität info 2
Course Neurobiologie I
Institution Technische Universität Darmstadt
Pages 15
File Size 849 KB
File Type PDF
Total Downloads 85
Total Views 134

Summary

Keine Beschreibung...


Description

Biomembran Eine Biomembran ist eine Trennschicht, die ein Zellkompartiment umgibt oder als Zellmembran den Innenraum einer Zelle vom Außenraum abgrenzt. Innerhalb der Zelle trennen unterschiedlich aufgebaute Biomembranen das Innere von Organellen oder Vakuolen vom Cytoplasma. Eine Biomembran hat durch Membrankomponenten eine aktive Rolle beim selektiven Transport von Molekülen und der Übermittlung von Informationen zwischen den beiden Kompartimenten, zwischen denen sich diese Biomembran befindet. Permeabilität (= Durchlässigkeit) einer Membran (  Stofftransport) Da die Biomembran vor allem eine Trennschicht zwischen verschiedenen Bereichen darstellt, ist sie für die meisten Moleküle undurchlässig. Kleinere lipophile Moleküle können frei durch die Lipiddoppelschicht der Membran diffundieren, wie zum Beispiel Kohlendioxid, Alkohole und Harnstoff. Um die Durchlässigkeit der Membran für lipophobe Teilchen wie Wasser, oder große Teilchen wie Ionen oder Zuckermoleküle zu ermöglichen, sind in die Membran verschiedene Transportproteine eingelagert, die für den Transport bestimmter Stoffe zuständig sind. Deshalb spricht man von selektiver Permeabilität. Aufbau Biomembranen bestehen aus Lipiden und Proteinen. An die Proteine können Kohlenhydratketten geknüpft sein. Der Lipidanteil bildet als Lipiddoppelschicht die Grundsubstanz der Membran. Die Lipiddoppelschicht besteht größtenteils aus amphiphilen Phospholipiden, die eine hydrophile Kopfgruppe und eine hydrophobe Schwanzgruppe (meistens Kohlenwasserstoffketten) besitzen. In Wasser bildet sich, als eine Folge des hydrophoben Effektes, eine Doppelschicht, bei der die hydrophoben Schwänze nach innen und die hydrophilen Köpfe nach außen zeigen. Wegen des hydrophoben Kerns ist eine solche Lipiddoppelschicht nahezu undurchlässig für Wasser und wasserlösliche Moleküle, gleichzeitig aber sehr flexibel und mechanisch schwer zu zerstören. Aus diesem Grund hinterlässt selbst ein Einstich mit einer Pipette kein Loch in der Membran. Dafür kann sie durch Lipidlösungsmittel und Lipasen zerstört werden.

Membranen sind aus drei Haupttypen von Lipiden aufgebaut: Phosphoglyceride, Sphingolipide und Cholesterin. 1) Phosphoglyceride Phospholipide mit einem Glycerin und einer Phosphatgruppe. Die Phosphatgruppe trägt oft einen Substituenten: Als Substituent häufig ist Cholin , was zu Phosphatidylcholin (PC) führt, oder aber auch Ethanolamin, führt zu Phosphatidylethanolamin (PE), Serin, führt zu Phosphatidylserin (PS) oder Inositol, führt zu Phosphatidylinositol (PI). Es gilt, dass alle beschriebenen Moleküle aus einer hydrophilen Kopfgruppe bestehen, dem Phosphat mit Substituenten und einem hydrophoben Schwanz, einer unverzweigten Fettsäure aus 16 bis 20 Atomen. Je nach Anzahl der Doppelbindungen in der Fettsäure unterscheidet man gesättigte Fettsäuren (keine Doppelbindungen), einfach ungesättigte (eine Doppelbindung), bis hin zu vielfach ungesättigten. 2) Sphingolipide Ein Sphingolipid ist eine Verbindung aus einem Sphingosin, das über seine Aminogruppe mit einer Fettsäure verknüpft ist. Die Hydroxygruppe kann mit verschiedenen Gruppen verestert

sein, ohne Veresterung ergeben sich Ceramide, eine Veresterung mit Phosphocholin ergibt Sphingomyelin und mit Sacchariden ergeben sich Glycosphingolipide. Sphingolipide sind ebenfalls amphipathisch und ähneln darin den Phospholipiden. 3) Cholesterin In tierischen Membranen kann bis zu 50 % Cholesterin enthalten sein (Masseprozent), weniger bei Pflanzen und bei Bakterien gar nicht. Cholesterin ist klein und wenig amphipathisch, aus diesem Grund befindet sich auch nur die Hydroxygruppe an der Membranoberfläche und der Rest des Moleküls in der Membran. Das starre Ringsystem des Cholesterins behindert den Fluss der Lipidschicht, macht diese also starrer.[4] Die Lipiddoppelschicht einer Biomembran ist normalerweise flüssig, d. h. die Lipide und Proteine sind in der Ebene der Membran recht beweglich. Ein Austausch von Lipiden zwischen den beiden Schichten oder gar ein Lösen eines Lipids von der Membran ist jedoch sehr selten. Eine gezielte Bewegung von einer Membranseite zur anderen (Flipflop) ist normalerweise nur unter dem aktiven Mitwirken von speziellen Proteinen (sogenannte Flippasen und Floppasen) unter Verbrauch von Adenosintriphosphat (ATP) möglich. Dabei transportieren Flippasen Lipide von der Außenseite der Plasmamembran zur cytosolischen Seite. Floppasen sind klassische ABC-Transporter und befördern Membranlipide von der cytosolischen Seite der Plasmamembran nach außen. Weitere Transporter für Membranlipide sind Scramblasen, die allerdings nicht ATP-abhängig Membranlipide in Richtung ihres Konzentrationsgradienten austauschen, bis sich ein Gleichgewicht eingestellt hat. Fluidität der Membran Die Lipide stellen die Grundsubstanz einer Membran dar. Sie sind für deren grundsätzliche Eigenschaften wie Stabilität, Flexibilität, Fluidität und Semipermeabilität verantwortlich. Die Stabilität der Membranen ergibt sich sowohl aus der Neigung der Membranlipide zur Bildung von Doppelschichten in wässrigem Milieu als auch aus den Wechselbeziehungen der Membranbausteine untereinander. Stabilität als wesentliche Eigenschaft der Membran für ihren Erhalt und die Aufrechterhaltung der Funktionen schließt aber zugleich Flexibilität ein. Diese ist vor allem begründet in den nur schwachen und ungerichteten Kräften zwischen den Kohlenwasserstoffketten der Membranlipide. Sie sind es auch, die die Fluidität einer Membran ausmachen. Gern wird die Lipiddoppelschicht mit dem Polarmeer verglichen, in dem die Proteine wie Eisberge schwimmen. Dieses Bild verdeutlicht einerseits, dass sich eine Biomembran in einem flüssigen Zustand befindet, andererseits die laterale Beweglichkeit der Membranproteine. Mit einem eindrucksvollen Experiment haben die Wissenschaftler FRYE und EDIDIN die Fluidität der Membran nachgewiesen. Sie verschmolzen isolierte menschliche Zellen mit Mäusezellen, nachdem sie in dem einen Fall mit rot, im anderen Fall mit grün fluoreszierenden Antikörpern markiert worden waren. Nach der Zellverschmelzung (Fusion) mischten sich rot und grün fluoreszierende Antikörper auf der Membranoberfläche. Das Flüssig-Mosaik-Modell (englisch fluid mosaic model) ist ein von Seymour Jonathan Singer und Garth Nicolson im Jahre 1972 entworfenes Modell, das die Anordnung und Organisation biologischer Membranen beschreibt. Nach dem Modell ist die Doppellipidschicht eine zweidimensionale Lösung gerichteter Lipide und globulärer Proteine. Lipide und integrale Membranproteine können lateral ungehindert in der Lipidmatrix diffundieren (laterale Diffusion), sofern dies nicht durch spezifische Wechselwirkungen unterbunden wird. Phospholipide können neben der lateralen Diffusion noch eine transversale Diffusion, den so genannten Flipflop ausführen, welcher aber viel langsamer abläuft. Eine dritte Klasse der Lipide, das Cholesterin, falls in großen Mengen am Membranaufbau beteiligt, erhöht die Viskosität der Membran. Zusätzlich reguliert werden kann die Fluidität durch Variation der Doppelbindungszahl und

Länge der Fettsäurereste. Höhere Temperaturen, kurze Fettsäurereste und viele ungesättigte Bindungen erhöhen ebenfalls den Grad der Fließfähigkeit. Das Modell gilt inzwischen weitgehend als überholt, da praktisch alle grundsätzlichen Annahmen in der Realität nicht gegeben sind: Membranproteine liegen in so hoher Konzentration vor, dass sie nicht „weit voneinander entfernt“ in der Lipidschicht schwimmen, sondern sich gegenseitig beeinflussen. Außerdem sind die meisten Transmembranproteine sehr viel größer als die typische Dicke einer ungestörten Lipiddoppelschicht. Biomembranen besitzen also durchaus eine lokale Ordnung, die jedoch sehr schwer direkt beobachtbar ist. Vor einigen Jahren wurden lokale funktionale Ordnungsstrukturen unter dem englischen Begriff Lipid Rafts diskutiert.

Die Fluidität einer Biomembran liegt zwischen starr und flüssig und erlaubt so eine gewisse Struktur. Membranproteine können sich zu funktionalen Einheiten zusammenlagern und später wieder trennen. Fluidität spielt auch eine große Rolle bei der Membrangenese und ist wichtig für viele grundlegende Prozesse wie Zellteilung, Zellwachstum, Sekretion etc. Während die Temperatur oft schwankt, muss die Membranfluidität dabei konstant bleiben. Um dies zu erreichen, können die Membranlipide modifiziert werden: Möglich ist ein Austausch von Phospholipiden; Desaturasen können aus Einfachbindungen Doppelbindungen bilden, Phosphatrückgrat und Lipidschwänze der Phospholipide können umverteilt werden und es kann ein höherer Anteil an ungesättigte Fettsäuren produziert werden als vorher. So ist speziell wechselwarmen Lebewesen eine Umweltanpassung möglich. Biomembranen sind flexibel => „fluid mosaic model“ niedere Temperaturen: Lipide sind relativ unbeweglich —> annähernd kristalline Struktur der Membran, oberhalb der Übergangstemperatur können sich Membranlipide schnell bewegen Übergangstemperatur ist für jede Membran charakteristisch und abhängig von ihrer Lipidzusammensetzung: • je länger die Fettsäureketten, desto höher die Übergangstemperatur • je höher der Anteil an gesättigten Fettsäuren, desto höher die Übergangstemperatur • unterhalb der Übergangstemperatur erhöhen Sterole die Fluidität • oberhalb der Übergangstemperatur verringern Sterole die Fluidität Je nach Umgebungstemperatur passen Organismen die Lipidzusammensetzung der Biomembranen an, um „richtige“ Membranfluidität zu gewährleisten.

Wie flüssig die Lipiddoppelschicht ist, hängt vor allem von der Anzahl der Doppelbindungen in den hydrophoben Kohlenwasserstoffketten der Lipide ab, einige Bakterien[5] nutzen auch Kettenverzweigungen. Je mehr, desto flüssiger ist die Membran. Andererseits wird der Grad der Flüssigkeit durch andere eingelagerte Moleküle bestimmt. Cholesterin zum Beispiel vermindert einerseits die Fluidität, verhindert aber bei niedrigen Temperaturen, dass sich die Membran gelartig verfestigt. Lipid rafts In der Biomembran sind Lipidmoleküle nicht gleichmäßig verteilt, sondern es existieren Mikrodomänen mit besonderer Lipidzusammensetzung. Speziell Cholesterin und Sphingolipide neigen zu solch einem Zusammenschluss. Manche Proteine, wie solche mit GPI-Anker, sammeln sich in solchen Bereichen an, während andere dort besonders selten zu finden sind. Vermutlich sind Lipidflöße sehr klein und in einem ständigen Prozess der Auflösung und Neubildung begriffen.

Nach dem Flüssig-Mosaik-Modell sind die Membranproteine nicht starr in der Membran fixiert, sondern zu hochdynamischen Ortsveränderungen innerhalb der Membran fähig. Diese Dynamik bildet die Voraussetzung für die Auslösung mannigfacher Signalketten auf Zellebene sowohl intrazellulär als auch zwischen kooperierenden Zellen.

Beispiele: • im Winterweizen ist das Verhältnis von ungesättigten zu gesättigten Fettsäuren höher als im Sommerweizen • im Fuß des Rentiers ist das Verhältnis von ungesättigten zu gesättigten Fettsäuren in den Zellmembranen höher als in den Zellen seines Oberschenkels • das Öl von Lein (Linum usitatissimum), der in kühleren Zonen gezogen wurde, ist wertvoller (mehr ungesättigte Fettsäuren) als das aus wärmeren Klimazonen Membranproteine: Verschiedene Arten von Membranproteinen, die in die Lipiddoppelschicht eingelagert sind, sorgen über Protein-Lipid-Interaktionen für unterschiedliche Eigenschaften der Biomembranen. Auch die beiden Seiten einer Biomembran können sich durch die Anordnung der Membranproteine stark unterscheiden. Eine Einteilung der Membranproteine ist nach ihrer Verankerung in der Lipiddoppelschicht möglich, man unterscheidet zwischen peripheren Proteinen und integralen Proteinen.

Bewegung der Membranbestandteile:

Modelle – Modellvorstellungen 1895 Charles Ernest Overton nimmt an, dass die Biomembranen aus Lipiden bestehen. Dieses schloss er aus Beobachtungen, dass lipophile (fettlösliche) Substanzen, zum Beispiel bestimmte Narkosemittel, sehr viel einfacher in Zellen gelangen können als solche Stoffe, die lipophob sind. 1917 Irving Langmuir vermutet, dass Phospholipide auf der Wasseroberfläche schwimmen. 1925 wurde von den niederländischen Wissenschaftlern Gorter und Grendel das Bilayer-Modell entwickelt: Phospholipide mit hydrophilen Gruppen sind als Doppelschicht in der Membran so angeordnet, dass die hydrophilen Gruppen der Lipide jeweils nach außen zeigen, die hydrophoben in das Innere der Doppelschicht. Allerdings ließen die beiden Forscher mit ihrem Modell den großen Proteinanteil der Biomembran völlig außer Acht. 1935 stellten J. F. Danielli und H. Davson das klassische Modell des Aufbaus einer Biomembran vor: Die Biomembran besteht aus einer bimolekularen Lipidschicht. Die hydrophoben Schwänze der Lipide stehen sich gegenüber, die hydrophilen Köpfe sind von Proteinen überzogen. Kurz: Protein – Lipiddoppelschicht – Protein (Sandwich-Struktur). Elektronenmikroskopische Aufnahmen von Biomembranen lassen einen dreischichtigen Aufbau erkennen: zwei äußere Schichten (je 2,5 nm dick) und eine mittlere Schicht (3 nm dick). Dieses Membranmodell wird als Einheitsmembran (engl.: unit membrane) bezeichnet. 1972 entwickelten Seymour Jonathan Singer und G. L. Nicolson das Flüssig-Mosaik-Modell (fluid mosaic model) einer Biomembran: Globuläre Proteinmoleküle „schwimmen“ in einem bimolekularen Lipidfilm. Der Lipidfilm verhält sich wie eine zähe zweidimensionale Flüssigkeit, dadurch können Lipidmoleküle und Proteine ungehindert in der Membranebene diffundieren. Es gibt zwei Typen der Membranassoziation von Proteinen. Integrale Proteine, auch transmembrane Proteine genannt, reichen durch die Membran hindurch. Periphere Proteine, auch assoziierte Proteine genannt, sind der Lipid-Doppelschicht aufgelagert. 1972: Zur gleichen Zeit wie Singer und Nicolson schlossen Frye und Edidin aus Versuchen mit zwei Zellen, bei denen bestimmte Membranproteine markiert wurden, dass die Membran nicht statisch sein kann, sondern in ständiger Bewegung ist. Sie vereinigten die markierten Zellen und die erst getrennt vorliegenden markierten Bereiche der Membran vermischten sich. 1983 stellten Mouritsen und Bloom das Mattress-Modell der Zellmembran vor. Es besagt, dass der in die Membran eingebettete hydrophobe Teil der Membranproteine nicht stets genau die entsprechende Größe der Zellmembran hat und sich somit Lipide verschiedener Kettenlänge passend um bestimmte Membranproteine lagern. Modell der abgegrenzten Bezirke („fence-and-picket-model"; KUSUMI u. a. 1996) Proteine sind durch das Cytoskelett an der Membraninnenseite in ihrer freien Beweglichkeit eingeschränkt. Diese abgegrenzten Bezirke können aber übersprungen werden (KUSUMI und Mitarbeiter konnten dies mit einer zeitlich sehr hochauflösenden Kamera und mit winzigen Goldplättchen markierten Proteinmolekülen nachweisen). Lipid-Floß-Modell („lipid-raft-model"; SIMONS u. a. 1997) Das Lipid-Floß-Modell geht davon aus, dass es in den Membranen floßartige Lipidschollen gibt, die zähflüssiger sind und mit ihren Proteinen in dem Lipidfilm driften. Dabei können einzelne Proteine

von diesen Flößen aufgenommen oder abgegeben werden. Die letzten Jahrzehnte brachten eine Fülle neuer Forschungsdaten, aus denen hervorgeht, dass man sich die Membranen eher als Fleckenteppich aus recht unterschiedlichen Regionen vorstellen muss, die sich in Aufbau und Funktion unterscheiden. So weiß man heute, dass die Proteine der Membranen oft zu größeren Komplexen verbunden sind und dass sie nicht – wie im fluid-mosaic-model angenommen – mehr oder weniger zufällig im Lipidfilm driften. Auch die Lipidschicht ist variabel zusammengesetzt. Allein schon die große Zahl verschiedener Membranproteine – bei Escherichia coli konnte man nachweisen, dass das Genom für mehr als 1 000 verschiedene Transmembranproteine codiert – macht eine zufällige Anordnung unmöglich. Dabei haben diese Membranproteine sehr unterschiedliche Formen. Manche sind weitgehend in die Lipid-Doppelschicht eingebettet, andere ragen mit ihren Strukturen weit über die Lipide hinaus und interagieren außerhalb mit anderen Molekülen. Diese herausragenden Strukturen können wesentlich größere Areale überdecken als die in der Lipidschicht steckenden Molekülteile. Außerdem spielen natürlich bei der Membranzusammensetzung auch die verschiedenen Funktionen unterschiedlicher Membranen eine wichtige Rolle. Myelinmembranen enthalten z. B. nur einen geringen Proteinanteil, während fotosynthetisch aktive Membranen sehr proteinreich sind. Viele Membranen grenzen zwei ganz unterschiedliche ,,Phasen" gegeneinander ab, z. B. den extrazellulären Raum gegen das Cytoplasma oder das lnnere eines Zellorganells gegen das Cytoplasma. Diesen unterschiedlichen Milieubedingungen werden die Membranen durch einen ,,asymmetrischen" Bau gerecht: Außenseite und lnnenseite sind unterschiedlich aufgebaut. So sind oft auch besondere Enzymsysteme in Membranen eingebaut, z. B. in den Thylakoidmembranen der Chloroplasten oder in der inneren Mitochondrienmembran.

Seit der Aufstellung des Flüssig-Mosaik-Modells von Singer und Nicholson 1972 wurden zahlreiche Hinweise entdeckt, die zur Formulierung des dynamisch strukturierten Mosaikmodelles führten. Verschiedene Untersuchungen zeigten, dass die Proteine und verschiedenen Lipidmoleküle keineswegs gleichmäßig auf der Oberfläche der Membran verteilt sind, wie es in einer reinen Flüssigkeit zu erwarten wäre. Stattdessen scheint es Gebiete mit einer hohen Konzentration von bestimmten Proteinen (sogenannte Rezeptor-Inseln) oder bestimmten Lipidtypen zu geben (sogenannte Lipid Rafts), die sich ständig umgruppieren, auflösen und wieder zusammenfinden.

Funktionen der Biomembranen:

Das Zytoplasma im Inneren einer Zelle wird durch eine Biomembran nach außen abgegrenzt. Diese nennt man Zellmembran, Plasmamembran, Plasmalemma oder Membrana cellularis. Biomembranen besitzen die folgenden Aufgaben: Kompartimentierung Jede Biomembran stellt aus energetischen Gründen eine lückenlose Schicht dar. Bei mehreren Membranen ergeben sich somit automatisch voneinander getrennte Räume, sogenannte Kompartimente. Die meisten Zellen enthalten Reaktions- und Speicherräume (Kompartimente), wie zum Beispiel die Zellorganellen und Vakuolen mit sehr unterschiedlichen chemischen Eigenschaften. In den unterschiedlichen Kompartimenten befinden sich sehr unterschiedliche Stoffe. Somit sind sehr unterschiedliche, z. T. sogar gegensätzliche Prozesse zur gleichen Zeit möglich, die sich nicht gegenseitig beeinträchtigen, wie Kohlenhydratauf- und abbau. Des Weiteren wird eine individuelle Regulation möglich. Gerüst für biochemische Aktivität Für spezifische Reaktionen ist die exakte Ausrichtung der Moleküle gegeneinander notwendig, da bestimmte Wechselwirkungen eingegangen werden müssen. In Lösung ist diese exakte Ausrichtung nicht möglich. Biomembranen bieten nun ein Gerüst, an dem Moleküle effektiv miteinander wechselwirken und reagieren können. Wichtige Reaktionen wären sonst nicht möglich; der Multienzymkomplex der Atmungskette und der Photosynthese sind beispielsweise in der Membran verankert. Selektive Permeabilität Teilchen durchdringen Membranen nicht ungehindert, sondern können ausgewählt und eventuell zurückgehalten werden. Transport gelöster Stoffe Moleküle können von der einen Seite der Membran auf die andere Seite transportiert werden, auch gegen ein Konzentrationsgefälle (also aktiv). So können Nährstoffe in der Zelle angereichert werden. Ionen können auch quer zur Membran transportiert werden, dies spielt eine große Rolle für Nerven und Muskeln. Reaktion auf externe Signale Die Plasmamembran ist wichtig für eine Reaktion auf externe Reize (also für die Signalübertragung). In der Membran liegen Rezeptoren. Diffundiert ein bestimmtes Molekül in ihre Nähe (ein Ligand) können sich beide auf Grund ihrer komplementären Struktur verbinden und der Rezeptor gibt ein Signal an die Zelle ab. Unterschiedliche Rezeptoren erkennen unterschiedliche Liganden, sodass die Zelle so Informationen über ihre Umwelt aufnehmen kann. Reaktionen auf die Umwelt wären durch eine Veränderung der Enzymtätigkeit den Stoffwechsel anzupassen, Speicherstoffe freizusetzen oder sogar Selbstmord zu begehen. Interzelluläre Wechselwirkung Die Plasmamembran ist die Außenschicht der Zelle. Bei Vielzellern tritt eine Zelle über die Plasmamembran mit ihren Nachbarz...


Similar Free PDFs