Bioquimica PDF

Title Bioquimica
Author Miguel Gomez
Course Microbiologie
Institution Université d'Etat d'Haiti
Pages 4
File Size 192 KB
File Type PDF
Total Downloads 37
Total Views 186

Summary

glucogeno ...


Description

GLUCOGENO. El glucógeno (o estramadol) es un polisacárido de reserva energética formado por cadenas ramificadas de glucosa; no es solubleen agua, por lo que forma dispersiones coloidales. Abunda en el hígado y en menor cantidad en el músculo.

(C6H10O5)n Estructura del glucógeno. Su estructura se parece a la de la amilopectina del almidón, aunque es mucho más ramificada. Está formada por varias cadenas que contienen de 12 a 18 unidades de glucosa unidas por enlaces glucosídicos α-1,4; uno de los extremos de esta cadena se une a la siguiente cadena mediante un enlace α-1,6-glucosídico, tal y como sucede en la amilopectina. Una sola molécula de glucógeno puede contener más de 120 000 monómeros de glucosa. La importancia de que el glucógeno sea una molécula tan ramificada es: 1. La ramificación aumenta su solubilidad. 2. La ramificación permite la abundancia de residuos de glucosa no reductores que van a ser los puntos reconocidos por las enzimas glucógeno sintasa y glucógeno fosforilasa, es decir, las ramificaciones facilitan tanto la velocidad de síntesis como la de degradación del glucógeno. El glucógeno es el polisacárido de reserva energética en los animales, y se almacena en el hígado (10% de la masa hepática) y en los músculos (1% de la masa muscular) de los vertebrados. Además, pueden encontrarse pequeñas cantidades de glucógeno en ciertas células gliales del cerebro. Gracias a la capacidad de almacenamiento de glucógeno, se reducen al máximo los cambios de presión osmótica que la glucosa libre podría ocasionar tanto en el interior de la célula como en el medio extracelular.

Gómez Moya Miguel Ángel

61L1

Cuando el organismo o la célula requieren de un aporte energético de emergencia, como en los casos de tensión o alerta, el glucógeno se degrada nuevamente a glucosa, que queda disponible para el metabolismo energético. En el hígado, la conversión de glucosa almacenada en forma de glucógeno a glucosa libre en sangre está regulada por las hormonas glucagón y adrenalina. El glucógeno hepático es la principal fuente de glucosa sanguínea, sobre todo entre comidas. El glucógeno contenido en los músculos abastece de energía el proceso de contracción muscular. El glucógeno se almacena dentro de vacuolas en el citoplasma de las células que lo utilizan para la glucólisis. Estas vacuolas contienen las enzimas necesarias para la hidrólisis de glucógeno a glucosa.

ALMIDON. El almidón, o fécula, es una macromolécula que está compuesta de dos polisacáridos, la amilosa (en proporción del 25 %) y la amilopectina (75 %).2 Es el glúcido de reserva de la mayoría de los vegetales.3 Gran parte de las propiedades de la harina y de los productos de panadería y repostería pueden explicarse conociendo las características del almidón. El almidón está constituido por dos compuestos de diferente estructura: Amilosa: Está formada por α-D-glucopiranosas unidas por centenares o miles (normalmente de 300 a 3000 unidades de glucosa) mediante enlaces α-(1 → 4) en una cadena sin ramificar, o muy escasamente ramificada mediante enlaces α-(1 → 6). Esta cadena adopta una disposición helicoidal y tiene seis monómeros por cada vuelta de hélice. Suele constituir del 25 al 30 % del almidón. 



Amilopectina: Representa el 70-75 % restante. También está formada por α-Dglucopiranosas, aunque en este caso conforma una cadena altamente ramificada en la que hay uniones α-(1 → 4), como se indicó en el caso anterior, y muchos enlaces α-(1 → 6) que originan lugares de ramificación cada doce monómeros. Su peso molecular es muy elevado, ya que cada molécula suele reunir de 2000 a 200 000 unidades de glucosa.

De todos modos, la proporción entre estos dos componentes varía según el organismo en el que se encuentre. Los almidones de los cereales contienen pequeñas cantidades de grasas. Los lípidos asociados al almidón son, generalmente, lípidos polares, que necesitan disolventes polares tales como metanolagua, para su extracción. Generalmente el nivel de lípidos en el almidón cereal, está entre 0,5 y 1 %. Los almidones no cereales no contienen esencialmente lípidos. Desde el punto de vista químico, es una mezcla de dos polisacáridos muy similares, la amilosa y la amilopectina; contienen regiones cristalinas y no cristalinas en capas alternadas. Puesto que la cristalinidad es producida por el ordenamiento de las cadenas de amilopectina, los gránulos de

Gómez Moya Miguel Ángel

61L1

almidón céreo tienen parecido grado de cristalinidad que los almidones normales. La disposición radial y ordenada de las moléculas de almidón en un gránulo resulta evidente al observar la cruz de polarización (cruz blanca sobre un fondo negro) en un microscopio de polarización cuando se colocan los polarizadores a 90° entre sí. El centro de la cruz corresponde con el hilum, el centro de crecimiento de gránulo. La amilosa es el producto de la condensación de D-glucopiranosas por medio de enlaces glucosídicos a (1,4), que establece largas cadenas lineales con 200-2500 unidades y pesos moleculares hasta de un millón; es decir, la amilosa es una a-D- (1,4)-glucana cuya unidad repetitiva es la a-maltosa. Tiene la facilidad de adquirir una conformación tridimensional helicoidal, en la que cada vuelta de hélice consta de seis moléculas de glucosa. El interior de la hélice contiene sólo átomos de hidrógeno, y es por tanto lipofílico, mientras que los grupos hidroxilo están situados en el exterior de la hélice. La mayoría de los almidones contienen alrededor del 25 % de amilosa. Los dos almidones de maíz comúnmente conocidos como ricos en amilosa que existen comercialmente poseen contenidos aparentes de masa alrededor del 52 % y del 70-75 %. La amilopectina se diferencia de la amilosa en que contiene ramificaciones que le dan una forma molecular similar a la de un árbol; las ramas están unidas al tronco central (semejante a la amilosa) por enlaces a-D-(1,6), localizadas cada 15-25 unidades lineales de glucosa. Su peso molecular es muy alto ya que algunas fracciones llegan a alcanzar hasta 200 millones de daltones. La amilopectina constituye alrededor del 75 % de los almidones más comunes. Algunos almidones están constituidos exclusivamente por amilopectina y son conocidos como céreos. La amilopectina de papa es la única que posee en su molécula grupos éster fosfato, unidos más frecuentemente en una posición O-6, mientras que el tercio restante lo hace en posición O-3.

CELULOSA. La celulosa es un biopolímero compuesto exclusivamente de moléculas de β-glucosa1 (desde cientos hasta varios miles de unidades), pues es un homopolisacárido. La celulosa es la biomolécula orgánica más abundante ya que forma la mayor parte de la biomasa terrestre. Igualmente la pueden producir algunos seres vivos que pertenezcan al reino protista.

(C6H10O5)n La celulosa se forma por la unión de moléculas de β-D-glucosa mediante enlaces β-1,4-O-glucosídico. Al hidrolizarse totalmente se obtiene glucosa. La celulosa es una larga cadena polimérica de peso molecular variable, con fórmula empírica (C6H10O5)n, con un valor mínimo de n= 2000.

Gómez Moya Miguel Ángel

61L1

Tiene una estructura lineal o fibrosa, en la que se establecen múltiples puentes de hidrógeno entre los grupos hidroxilo de distintas cadenas yuxtapuestas de glucosa, haciéndolas impenetrables al agua, lo que hace que sea insoluble en agua, y originando fibras compactas que constituyen la pared celular de las células vegetales. La celulosa es un polisacárido estructural en las plantas, ya que forma parte de los tejidos de sostén.6 La pared de una célula vegetal joven contiene aproximadamente un 40 % de celulosa; la madera un 50 %, mientras que el ejemplo más puro de celulosa es el algodón, con un porcentaje mayor al 90 %.7 A pesar de que está formada por glucosas, los animales no pueden utilizar la celulosa como fuente de energía,8 ya que no cuentan con la celulasa, la enzima necesaria para romper los enlaces β-1,4glucosídicos y por ello los animales no pueden digerirla. Sin embargo, es importante incluirla en la dieta humana (fibra dietética) porque al mezclarse con las heces facilita la digestión y ayuda con el estreñimiento. En el aparato digestivo de los rumiantes (pre-estómagos), de otros herbívoros y de termitas, existen microorganismos, muchos metanógenos, que sí poseen la celulasa y logran romper el enlace β-1,4-glucosídico9 y cuando este polisacárido es hidrolizado quedan disponibles las moléculas de glucosas como fuente de energía. Hay microorganismos (bacterias y hongos) que viven libres y también son capaces de hidrolizar la celulosa. Tienen una gran importancia ecológica, pues reciclan materiales celulósicos como papel, cartón y madera. De entre ellos, es de destacar el hongo Trichoderma reesei, capaz de producir cuatro tipos de celulasas: las 1,4-β-D-glucancelobiohirolasas CBH i y CBH II y las endo-1,4-β-Dglucanasa EG I y EG II. Mediante técnicas biotecnológicas se producen esas enzimas que pueden usarse en el reciclado de papel, disminuyendo el coste económico y la contaminación.

Gómez Moya Miguel Ángel

61L1...


Similar Free PDFs